×

zbMATH — the first resource for mathematics

The dual boundary element method: Effective implementation for crack problems. (English) Zbl 0825.73908

MSC:
74S15 Boundary element methods applied to problems in solid mechanics
76M25 Other numerical methods (fluid mechanics) (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] and , Boundary Elements–An Introductory Course, Computational Mechanics Publications, Southampton, U.K., 1989.
[2] Rizzo, Quart. Appl. Ma 25 pp 83– (1967)
[3] ’Theoretical basis of boundary solutions for linear theory of structures’, in (ed.), New Developments in Boundary Element Method. Proc. Second International Seminar on Recent Advances in Bound, Element Methods, University of Southampton, 1980.
[4] and , ’Boundary integral equation analysis of cracked anisotropic plates’. Int. J. Fract., 315-328 (1975).
[5] Crouch, Int. j. numer. meth eng. 10 pp 301– (1976)
[6] Blandford, Int. j. numer. methods eng. 17 pp 387– (1991)
[7] Hong, J. Eng. Mech. ASCE 114 pp 1028– (1988)
[8] Kuhn, ZAMM 61 pp 105– (1981)
[9] Sladek, ZAMM 66 pp 83– (1986)
[10] Boundary Element Analysis in Computational Fracture Mechanics, Kluwer Academic Publish Dordrecht, 1989.
[11] ’Field singularities and related integral representations’, in (ed.), Mechanics of Fracu Vol. 1, Nordhoff, Leyden, The Netherlands, 1973. · Zbl 0319.73055
[12] ’Hermitian cubic and singular elements for plane strain’, in and (eds.), Development Boundary Element Methods 4, Elsevier Applied Science Publishers, Barking, U.K., 1986.
[13] ’Boundary element method for regions with thin internal cavities’, IBM Bergen Scientific Centre, Allega 36, 5007 Bergen, Norway, 1987.
[14] Gray, In numer. methods eng. 29 pp 1135– (1990)
[15] , and , ’On the use of strongly singular integral equations crack problems’, Proc. Boundary Elements X, Computational Mechanics Publications, Southampton, 1988.
[16] ’Mathematical foundations of the boundary integral equation method in solid mechanics’, Report 1 AFOSR-TR-77-1002, Pratt and Whitney Aircraft Group, 1977.
[17] Lectures on Cauchys Problem in Linear Partial Differential Equations, New Haven, Yale Univers Press, 1923.
[18] ’On the numerical evaluation of finite-part integrals involving an algebraic singularity’, CSIR Spm Report WISK 179, National Research Institute for Mathematical Sciences, P.O. Box 395. Pretoria 0001, South Afri 1975.
[19] Linz, Computing 35 pp 345– (1988)
[20] Ioakimidis, Acta Mech. 45 pp 31– (1982)
[21] and , ’Dual boundary element analysis of linear elastic crack problems’. Advances in BEM for Fracture Mechanics, Computational Mechanics Publications, Southampton, U.K., to published.
[22] , and , ’Overhouser boundary elements in potential theory 2 linear elastostatics’, in (ed.), Advanced Boundary Element Methods, Springer-Verlag, Berlin, 1988.
[23] and , Numerical Fracture Mechanics, Computational Mechanical Publicatic Southampton, and Kluwer Academic Publishers, Dordrecht, 1991. · Zbl 0769.73001 · doi:10.1007/978-94-011-3360-9
[24] Williams, J. Appl. Mech. ASME 19 pp 526– (1952)
[25] Rice, J. Appl. Mech. ASME 35 pp 379– (1968) · doi:10.1115/1.3601206
[26] and , ’Application of J-integral to mixed-mode crack problems’, Trans. JSME, No. 760-13, 46-48 (1976);
[27] Trans. JSME, No. 780-4, 52-54 (1978).
[28] ’Evaluation of mixed-mode stress intensity factors using the path independent J-integral’, Proc. Boundary Elements in Engineering XII, Hokkaido, Japan, Computational Mechanics Publications, Southampton, U.K., 1990. · Zbl 0806.73072
[29] Civelek, Int. J. Fract. 19 pp 139– (1982)
[30] Stress Intensity Factors Handbook, Pergamon Press, Oxford, 1987.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.