×

zbMATH — the first resource for mathematics

Effect of frictional force on the steady state axisymmetric deformations of a viscoplastic target. (English) Zbl 0825.73636

MSC:
74A55 Theories of friction (tribology)
74M15 Contact in solid mechanics
74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Batra, R. C., Gobinath, T.: Steady state axisymmetric deformations of a thermoviscoplastic rod penetrating a thick thermoviscoplastic target. Int. J. Impact Eng.11, 1-31 (1991). · doi:10.1016/0734-743X(91)90028-E
[2] Gobinath, T., Batra, R. C.: A steady state axisymmetric penetration problem for rigid perfectly plastic materials. Int. J. Eng. Sci.29, 1315-1331 (1991). · doi:10.1016/0020-7225(91)90036-3
[3] Batra, R. C., Wright, T. W.: Steady state penetration of rigid perfectly plastic targets. Int. J. Eng. Sci.24, 41-54 (1986). · doi:10.1016/0020-7225(86)90147-3
[4] Batra, R. C.: Steady state penetration of viscoplastic targets. Int. J. Eng. Sci.25, 1131-1141 (1987). · doi:10.1016/0020-7225(87)90077-2
[5] Batra, R. C.: Steady state penetration of thermoviscoplastic targets. Comp. Mech.3, 1-12 (1988). · Zbl 0626.73130 · doi:10.1007/BF00280747
[6] Jayachandran, R., Batra, R. C.: Steady state penetration of elastic perfectly plastic targets. Acta Mech.92, 9-27 (1992). · doi:10.1007/BF01174164
[7] Birchoff, G., McDougall, D. P., Pugh, E. M., Taylor, G.: Explosives with lined cavities. J. Appl. Phys.19, 563-582 (1948). · doi:10.1063/1.1698173
[8] Pack, D. C., Evans, W. M.: Penetration of high velocity jets. Proc. Phys. Soc. Lond.B 64, 298-303 (1951). · doi:10.1088/0370-1301/64/4/302
[9] Alekseevskii, V. P.: Penetration of a rod into a target at high velocity. Comb. Expl. and Shock Waves2, 63-66 (1966) (translation from Russian). · doi:10.1007/BF00749237
[10] Tate, A.: A theory for the deceleration of long rods after impact. J. Mech. Phys. Solids15, 387-399 (1967). · doi:10.1016/0022-5096(67)90010-5
[11] Tate, A.: Long rod penetration models. Part I. A flow field model for high speed long rod penetration. Int. J. Mech. Sci.28, 535-548 (1986). · doi:10.1016/0020-7403(86)90051-2
[12] Tate, A.: Long rod penetration models. Part II. Extensions to the hydrodynamic theory of penetration. Int. J. Mech. Sci.28, 599-612 (1986). · doi:10.1016/0020-7403(86)90075-5
[13] Backman, M. E., Goldsmith, W.: The mechanics of penetration of projectiles into targets. Int. J. Eng. Sci.16, 1-99 (1978). · doi:10.1016/0020-7225(78)90002-2
[14] Jones, G. H., Zukas, J. A.: Mechanics of penetration: analysis and experiment. Int. J. Eng. Sci.16, 879 (1978). · doi:10.1016/0020-7225(78)90073-3
[15] Anderson, C. E., Bodner, S. R.: The status of ballistic impact modeling. Int. J. Impact Eng.7, 9-35 (1988). · doi:10.1016/0734-743X(88)90010-3
[16] Awerbuch, J.: MED Report No. 28. Technion-Israel Inst. of Techn. 1970.
[17] Awerbuch, J., Bodner, S. R.: Analysis of the mechanics of perforation of projectiles in metallic plates. Int. J. Solids Struct.10, 671-684 (1974). · doi:10.1016/0020-7683(74)90050-X
[18] Ravid, M., Bodner, S. R.: Dynamic perforation of viscoplastic plates by rigid projectiles. Int. J. Eng. Sci.21, 577-591 (1983). · doi:10.1016/0020-7225(83)90105-2
[19] Ravid, M., Bodner, S. R., Holcman, I.: Analysis of very high speed impact. Int. J. Eng. Sci.25, 473-482 (1987). · doi:10.1016/0020-7225(87)90073-5
[20] Batra, R. C., Chen, X.: An approximate analysis of steady state axisymmetric deformations of viscoplastic targets. Int. J. Eng. Sci.28, 1347-1358 (1990). · doi:10.1016/0020-7225(90)90081-S
[21] Jones, S. E., Gillis, P. P., Foster, J. C.: On the penetration of semi-infinite targets by long rods. J. Mech. Phys. Solids35, 121-131 (1987). · doi:10.1016/0022-5096(87)90031-7
[22] Woodward, R. L.: Penetration of semi-infinite metal targets by deforming projectiles. Int. J. Mech. Sci.24, 73 (1982). · doi:10.1016/0020-7403(82)90039-X
[23] Forrestal, M. J., Okajima, K., Luk, V. K.: Penetration of 6061-T651 aluminium targets with rigid long rods. J. Appl. Mech.55, 755-760 (1988). · doi:10.1115/1.3173718
[24] Oden, J. T.: On the general rolling contact problem for finite deformations of a viscoelastic cylinder. Comp. Meth. Appl. Mech. Engng.57, 297-367 (1986). · Zbl 0591.73141 · doi:10.1016/0045-7825(86)90143-X
[25] Chen, E.-P.: Penetration into dry porous rock. A numerical study on frictional simulation. In: Computational techniques for contact, impact, penetration and perforation of solids (Schwer, L. E., Salamon, N. J., Kiu, W. K., eds.), pp. 325-336. ASME Press 1989.
[26] Tate, A.: A simple hydrodynamic model for the strain field in a target by the penetration of a high speed long rod projectile. Int. J. Eng. Sci.16, 845-858 (1978). · doi:10.1016/0020-7225(78)90070-8
[27] Schlichting, H.: Boundary-layer theory (translated by J. Kestin). New York: McGraw-Hill 1979. · Zbl 0434.76027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.