×

zbMATH — the first resource for mathematics

A universal bifurcation diagram for seasonally perturbed predator-prey models. (English) Zbl 0824.92027
Summary: The bifurcations of a periodically forced predator-prey model (the chemostat model), with a prey feeding on a limiting nutrient, are numerically detected with a continuation technique. Eight bifurcation diagrams are produced (one for each parameter in the model) and shown to be topologically equivalent. These diagrams are also equivalent to those of the most commonly used predator-prey model (the Rosenzweig-McArthur model). Thus, all basic modes of behavior of the two main predator-prey models can be explained by means of a single bifurcation diagram.

MSC:
92D40 Ecology
34C23 Bifurcation theory for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Afrajmovich, V. S., V. I. Arnold, Yu. S. Il’ashenko and P. Shinlnikov. 1991. Bifurcation theory. InDynamical Systems, Vol. 5, V. I. Arnold (Ed.),Encyclopaedia of Mathematical Sciences. New York: Springer Verlag.
[2] Allen, J. C. 1989. Are natural enemy populations chaotic? InEstimation and Analysis of Insect Populations, Lecture Notes in Statistics, Vol. 55, L. McDonald, B. Manly, J. Lockwood and J. Logan (Eds), pp. 190–205. New York: Springer Verlag.
[3] Bajaj, A. K. 1986. Resonant parametric perturbations of the Hopf bifurcation.J. Math. Anal. Appl. 155, 214–224 · Zbl 0588.34031
[4] Doveri, F., M. Scheffer, S. Rinaldi, S. Muratori and Yu. A. Kuznetsov. 1993. Seasonality and chaos in a plankton-fish model.Theor. pop. Biol. 43, 159–183. · Zbl 0825.92135
[5] Gambaudo, J. M. 1985. Perturbation of a Hopf bifurcation by an external time-periodic forcing.J. Diff. Eqns. 57, 172–199. · Zbl 0516.34042
[6] Gary, C., W. Sabin and D. Summer. 1993. Chaos in a periodically forced predator-prey ecosystem model.Math. Biosc. 113, 91–113. · Zbl 0767.92028
[7] Guckenheimer, J. and P. Holmes. 1983.Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. New York: Springer Verlag. · Zbl 0515.34001
[8] Hanski, I., P. Turchin, E. Korpimäki and H. Henttonen 1993. Population oscillations of boreal rodents: regulation by mustelid predators leads to chaos.Nature 364, 232–235.
[9] Hastings, A., C. L. Hom, S. Ellner, P. Turchin and H. C. J. Godfray. 1993. Chaos in ecology: is mother nature a strange attractor?Ann. Rev. Ecol. Syst. 24, 1–33.
[10] Inoue, M. and H. Kamifukumoto. 1984. Scenarios leading to chaos in forced Lotka-Volterra model.Prog. theor. Phys. 71, 930–937. · Zbl 1074.37522
[11] Kath, W. L. 1981. Resonance in a periodically perturbed Hopf bifurcation.Stud. Appl. Math. 65, 95–112. · Zbl 0487.34041
[12] Khibnik, A. I., Yu. A. Kuznetsov, V. V. Levitin and E. V. Nikolaev. 1993. Continuation techniques and interactive software for bifurcation analysis of ODEs and interated maps.physica D 62, 360–370. · Zbl 0784.34030
[13] Kot, M., G. S. Sayler and T. W. Schultz. 1992. Complex dynamics in a model microbial system.Bull. Math Biol. 54, 619–648. · Zbl 0761.92041
[14] Kuznetsov, Yu. A. and S. Rinaldi, 1991. Numerical analysis of the flip bifurcation of maps.Appl. math. Comp. 43, 231–236. · Zbl 0729.65050
[15] Kuznetsov, Yu. A., S. Muratori and S. Rinaldi. 1992. Bifurcation and chaos in a periodic predator-prey model.Int. J. Bifurcation Chaos 2, 117–128. · Zbl 1126.92316
[16] Namachchivaya, S. N. and S. T. Ariaratnam. 1987. Periodically perturbed Hopf bifurcation.SIAM J. appl. Math. 47, 15–39. · Zbl 0625.70022
[17] Pavlou, S. and I. G. Kevrekidis. 1992. Microbial predation in a periodically operated chemostat: a global study of the interaction between natural and externally imposed frequencies.Math. Biosc. 108, 1–55. · Zbl 0729.92522
[18] Rinaldi, S. and S. Muratori. 1993. Conditioned chaos in seasonally perturbed predator-prey models.Ecol. Model. 69, 79–97. · Zbl 0756.92026
[19] Rinaldi, S., S. Muratori and Yu. A. Kuznetsov. 1993. Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities.Bull. Math. Biol. 55, 15–35. · Zbl 0756.92026
[20] Robertson, D. R., C. W. Petersen and J. D. Brawn. 1990. Lunar reproductive cycles of benthicbroading reef fishes: reflections of larval biology or adult biology?Ecol. Monogr. 60, 311–329.
[21] Rosenblat, S. and D. S. Cohen. 1981. Periodically perturbed bifurcation-II Hopf bifurcation.Stud. appl. Math. 64, 143–175. · Zbl 0482.34037
[22] Schaffer, W. M. 1988. Perceiving order in the chaos of nature. InEvolution of Life Histories of Mammals, M. S. Boyce (Ed.), pp. 313–350. New Haven: Yale University Press.
[23] Toro, M. and J. Aracil. 1988. Qualitative analysis of system dynamics ecological models.Syst. Dyn. Rev. 4, 56–80.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.