×

zbMATH — the first resource for mathematics

On quasi-interpolation by radial basis functions with scattered centres. (English) Zbl 0824.41010
Summary: Approximation by radial basis functions with “quasi-uniformly” distributed centres in \(\mathbb{R}^ d\) is discussed. A construction of new polynomially decaying functions that span the approximation space is presented and the properties of the quasi-interpolation operator with these functions are investigted. It is shown that the quasi-interpolant reproduces polynomials and gives approximation orders identical to those in the uniform square-grid case.

MSC:
41A15 Spline approximation
41A63 Multidimensional problems
41A25 Rate of convergence, degree of approximation
65D15 Algorithms for approximation of functions
41A30 Approximation by other special function classes
65D07 Numerical computation using splines
65D10 Numerical smoothing, curve fitting
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. K. Beatson, M. J. D. Powell (1992):Univariate multiquadric interpolation: quasi-interpolation to scattered data. Constr. Approx.,8:275-288. · Zbl 0763.41012
[2] C. De Boor, K. Höllig (1982/83):B-splines from parallelepipeds. J. d’Analyse Math.,42: 99-115. · Zbl 0534.41007
[3] M. D. Buhmann (1993):Multivariate interpolation in odd-dimensional Euclidean spaces using multiquadrics. Constr. Approx.,6:21-34. · Zbl 0682.41007
[4] M. D. Buhmann (1993):On quasi-interpolation with radial basis functions. J. Approx. Theory,72:103-130. · Zbl 0820.41006
[5] N. Dyn (1987):Interpolation and approximation by radial and related functions. In: Approximation Theory VI (C. K. Chui, L. L. Schumaker, J. D. Ward, eds.). New York: Academic Press, pp. 211-234.
[6] N. Dyn, I. R. H. Jackson, D. Levin, A. Ron (1992):On multivariate approximation by integer translates of a basis function. Israel J. Math.,78:95-130. · Zbl 0769.41008
[7] N. Dyn, D. Levin (1981):Bell-shaped basis functions for surface fitting. In: Approximation Theory and Applications (Z. Ziegler, ed.). New York: Academic Press, pp. 113-129.
[8] N. Dyn, D. Levin (1983):Iterative solution of systems originating from integral equations and surface interpolation. SIAM J. Numer. Anal.,20:377-390. · Zbl 0517.65096
[9] N. Dyn, D. Levin, S. Rippa (1986):Numerical procedures for global surface fitting of scattered data by radial functions. SIAM J. Sci. Statist. Comput.,7:639-659. · Zbl 0631.65008
[10] I. R. H. Jackson (1989):An order of convergence for some radial basis functions. IMA J. Numer. Anal.,9:567-587. · Zbl 0678.41004
[11] D. S. Jones (1982): The Theory of Generalised Functions. Cambridge: Cambridge University Press. · Zbl 0477.46035
[12] M. J. D. Powell (1990):Univariate multiquadric interpolation: reproduction of linear polynomials. In: Multivariate Approximation and Interpolation (W. Haussmann, K. Jetter, eds.). Basel: Birkhäuser, pp. 227-240.
[13] M. J. D. Powell (1992):The Theory of radial basis function approximation in 1990. In: Advances in Numerical Analysis, vol. II (W. A. Light, ed.). Oxford: Oxford University Press, pp. 105-210. · Zbl 0787.65005
[14] C. Rabut (1991):How to build quasi-interpolants: application to polyharmonic B-splines. In: Curves and Surfaces (P.-J. Laurent, A. Le Méhauté, L. L. Schumaker, eds.). Boston: Academic Press, pp. 391-402. · Zbl 0733.41007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.