×

zbMATH — the first resource for mathematics

Population size dependent incidence in models for diseases without immunity. (English) Zbl 0823.92027
Summary: Epidemiological models of SIS type are analyzed to determine the thresholds, equilibria, and stability. The incidence term in these models has a contact rate which depends on the total population size. The demographic structures considered are recruitment-death, generalized logistic, decay and growth. The persistence of the disease combined with disease-related deaths and reduced reproduction of infectives can greatly affect the population dynamics. For example, it can cause the population size to decrease to zero or to a new size below its carrying capacity or it can decrease the exponential growth rate constant of the population.

MSC:
92D30 Epidemiology
34D05 Asymptotic properties of solutions to ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson, R. M., Jackson, H. C., May, R. M., Smith, A. D. M.: Population dynamics of fox rabies in Europe. Nature 289, 765-777 (1981) · doi:10.1038/289765a0
[2] Anderson, R. M., May, R. M.: Population biology of infectious diseases I. Nature 280, 361-367 (1979) · doi:10.1038/280361a0
[3] Anderson, R. M., May, R. M.: The population dynamics of microparasites and their invertebrate hosts. Phil. Trans. Roy. Soc. London B291, 451-524 (1981)
[4] Anderson, R. M. and May, R. M. (eds).: Population Biology of Infectious Diseases. Berlin Heidelberg New York Springer (1982) · Zbl 1225.37099
[5] Anderson, R. M., May, R. M.: Infectious Diseases of Humans: Dynamics and Control. Oxford, Oxford University Press, (1991)
[6] Anderson, R. M., May, R. M., McLean, A. R.: Possible demographic consequences of AIDS in developing countries. Nature 332, 228-234 (1988) · doi:10.1038/332228a0
[7] Anderson, R. M., Medley, G. P., May, R. M., Johnson, A. M.: A preliminary study of the transmission dynamics of the human immunodeficiency virus, the causative agent of AIDS. IMA J. Math. Appl. Med. Biol. 3, 229-263 (1986) · Zbl 0609.92025 · doi:10.1093/imammb/3.4.229
[8] Bailey, N. T. J.: The Mathematical Theory of Infectious Diseases (2nd ed.). New York: Hafner (1975) · Zbl 0334.92024
[9] Becker, N.: Analysis of Infectious Disease Data. Chapman and Hall, New York (1989)
[10] Beverton, R. J. H., Holt, S. J.: On the dynamics of exploited fish populations. Fishery Investigations, Series 2, No.19, H.M.S.O., London (1957)
[11] Brauer, F.: Epidemic models in populations of varying size. In: Mathematical Approaches to Problems in Resource Management and Epidemiology. Castillo-Chavez, C. C., Levin, S. A. and Shoemaker, C. (eds.). Lecture Notes in Biomathematics 81. pp. 109-123, Berlin Heidelberg New York: Springer (1989)
[12] Brauer, F.: Models for the spread of universally fatal diseases. J. Math. Biol. 28, 451-462 (1990) · Zbl 0718.92021 · doi:10.1007/BF00178328
[13] Brauer, F.: Models for universally fatal diseases, II. In: Differential Equations Models in Biology, Epidemiology and Ecology. Busenberg, S., Martelli, M. (eds.). Lecture Notes in Biomathematics 92, pp 57-69, Berlin Heidelberg New York: Springer (1991) · Zbl 0737.92014
[14] Bremermann, H. J., Thieme, H. R.: A competitive exclusion principle for pathogen virulence. J. Math. Biol. 27, 179-190 (1989) · Zbl 0715.92027
[15] Busenberg, S., Cooke, K. L.: Vertically Transmitted Diseases. Biomathematics Vol. 23. Berlin Heidelberg New York: Springer (1993) · Zbl 0837.92021
[16] Busenberg, S., Cooke, K. L., Pozio, A.: Analysis of a model of a vertically transmitted disease. J. Math. Biol. 17, 305-329 (1983) · Zbl 0518.92024 · doi:10.1007/BF00276519
[17] Busenberg, S., Cooke, K. L., Thieme, H. R.: Demographic change and persistence of HIV/AIDS in a heterosexual population. SIAM J. Appl. Math. 51: 1030-1051 (1991) · Zbl 0739.92014 · doi:10.1137/0151052
[18] Busenberg, S. N. and Hadeler, K. P.: Demography and epidemics. Math. Biosci. 101, 41-62 (1990) · Zbl 0751.92012 · doi:10.1016/0025-5564(90)90102-5
[19] Busenberg, S. N., van den Driessche, P.: Analysis of a disease transmission model in a population with varying size. J. Math. Biol. 28, 257-270 (1990) · Zbl 0725.92021 · doi:10.1007/BF00178776
[20] Castillo-Chavez, C. C. (ed.): Mathematical and Statistical Approaches to AIDS Epidemiology. Lecture Notes in Biomathematics 83. Berlin Heidelberg New York: Springer (1989) · Zbl 0682.00023
[21] Castillo-Chavez, C. C., Cooke, K., Huang, W., Levin, S. A.: On the role of long incubation periods in the dynamics of AIDS I: single population models. J. Math. Biol. 27, 373-398 (1989) · Zbl 0715.92029 · doi:10.1007/BF00290636
[22] DeJong, M. C. M., Diekmann, O., Heestebeek, J. A. P.: How does transmission depend on population size? In: Human Infectious Diseases, Isham, V., Medley, G. (eds), Proceedings of a Conference at the Isaac Newton Institute for Mathematical Sciences, March 1993
[23] Derrick, W. R., van den Driessche, P.: A disease transmission model in a nonconstant population. J. Math. Biol. 31, 495-512 (1993) · Zbl 0772.92015 · doi:10.1007/BF00173889
[24] Diekmann, O., Kretzschmar, M.: Patterns in the effects of infectious diseases on population growth. J. Math. Biol. 29, 539-570 (1991) · Zbl 0732.92024 · doi:10.1007/BF00164051
[25] Dietz, K.: Overall population patterns in the transmission cycle of infectious disease agents. In: Population Biology of Infectious Diseases, Anderson, R. M., May, R. M. (eds). Berlin Heidelberg New York: Springer (1982)
[26] Dietz, K., Schenzle, D.: Mathematical models for infectious disease statistics. In: A Celebration of Statistics, Atkinson, A. C., Fienberg, S. E. (eds.). Berlin Heidelberg New York: Springer 167-204 (1985) · Zbl 0586.92017
[27] Edelstein-Keshet, L.: Mathematical Models in Biology. New York, Random House (1988) · Zbl 0674.92001
[28] Fine, P.: Vectors and vertical transmission: an epidemiological perspective. Ann N. Y. Acad. Sci. 266, 173-194 (1975) · doi:10.1111/j.1749-6632.1975.tb35099.x
[29] Gao, L. Q., Hethcote, H. W.: Disease transmission models with density-dependent demographics. J. Math. Biol. 30, 717-731 (1992) · Zbl 0774.92018 · doi:10.1007/BF00173265
[30] Grabiner, D.: Mathematical models for vertically transmitted diseases. Technical report, Pomona College, Claremont, California (1988)
[31] Greenhalgh, D.: An epidemic model with a density-dependent death rate. IMA J. Math. Appl. Med. Biol. 7, 1-26 (1990) · Zbl 0751.92014 · doi:10.1093/imammb/7.1.1
[32] Greenhalgh, D.: Vaccination in density dependent epidemic models. Bull. Math. Biol. 54, 733-758 (1992) · Zbl 0766.92020
[33] Greenhalgh, D.: Some threshold and stability results for epidemic models with a density dependent death rate. Theor. Pop. Biol. 42, 130-151 (1992) · Zbl 0759.92009 · doi:10.1016/0040-5809(92)90009-I
[34] Greenhalgh, D.: Some results for an SEIR epidemic model with density dependence in the death rate. IMA J. Math. Appl. Med. Biol. 9, 67-106 (1992) · Zbl 0805.92025 · doi:10.1093/imammb/9.2.67
[35] Guilland, F. M. D.: The impact of infectious diseases on wild animal populations. Proceedings of the Wildlife Diseases Workshop, March 14-20, 1993, Isaac Newton Institute for the Mathematical Sciences. Cambridge: Cambridge University Press (to be published)
[36] Hale, J. K.: Ordinary Differential Equations. New York; Wiley (1969) · Zbl 0186.40901
[37] Heesterbeek, J. A. P., Metz, J. A. J.: The saturating contact rate in marriage- and epidemic models. J. Math. Biol. 31, 529-539 (1993) · Zbl 0770.92021 · doi:10.1007/BF00173891
[38] Hethcote, H. W.: Qualitative analyses of communicable disease models. Math. Biosci. 28, 335-356 (1976) · Zbl 0326.92017 · doi:10.1016/0025-5564(76)90132-2
[39] Hethcote, H. W.: Three basic epidemiological models. In: Applied Mathematical Ecology, pp. 119-144, Gross, L., Hallam, T. G., Levin, S. A. (eds.). Berlin Heidelberg New York: Springer (1989)
[40] Hethcote, H. W.: A thousand and one epidemic models. In: Frontiers in Theoretical Biology, Levin, S. A. (ed.), Lecture Notes in Biomathematics 100. Berlin Heidelberg New York: Springer (to be published) · Zbl 0819.92020
[41] Hethcote, H. W., Levin, S. A.: Periodicity in epidemiological models. In: Applied Mathematical Ecology, pp. 193-211, Gross, L., Hallam, T. G., Levin, S. A. (eds.). Berlin Heidelberg New York: Springer (1989)
[42] Hethcote, H. W., Stech, H. W., van den Driessche, P.: Periodicity and stability in epidemic models: asurvey. In: Differential Equations and Applications in Ecology, Epidemics and Population Problems, pp. 65-82, Busenberg, S. N., Cooke, K. L. (eds.). New York: Academic Press, (1981) · Zbl 0477.92014
[43] Hethcote, H. W., Van Ark, J. W.: Epidemiological models with heterogeneous populations: Proportionate mixing, parameter estimation and immunization programs. Math Biosci. 84, 85-118 (1987) · Zbl 0619.92006 · doi:10.1016/0025-5564(87)90044-7
[44] Hethcote, H. W., Van Ark, J. W.: Modeling HIV Transmission and AIDS in the United States. Lecture Notes in Biomathematics 95. Berlin Heideiberg New York: Springer (1992) · Zbl 0805.92026
[45] Hethcote, H. W., Yorke, J. A.: Gonorrhea Transmission Dynamics and Control. Lecture Notes in Biomathematics 56. Berlin Heidelberg New York: Springer (1984) · Zbl 0542.92026
[46] Hirsch, W. M., Hanisch, H., Gabriel, J. P.: Differential equation models for some parasitic infections; methods for the study of asymptotic behavior. Comm. Pure Appl. Math. 38, 733-753 (1985) · Zbl 0637.92008 · doi:10.1002/cpa.3160380607
[47] Hyman, J. M., Stanley, E. A.: Using mathematical models to understand the AIDS epidemic. Math. Biosci. 90, 415-473 (1988) · Zbl 0727.92025 · doi:10.1016/0025-5564(88)90078-8
[48] Jacquez, J. A., Simon, C. P., Koopman, J., Sattenspiel, L., Perry, T.: Modeling and analyzing HIV transmission: the effect of contact patterns. Math. Biosci. 92, 119-199 (1988) · Zbl 0686.92016 · doi:10.1016/0025-5564(88)90031-4
[49] Jordan, D. W., Smith, P.: Nonlinear Ordinary Differential Equations. Oxford: Clarendon Press (1987) · Zbl 0611.34001
[50] Lin, X.: On the uniqueness of endemic equilibria of an HIV/AIDS transmission model for a heterogeneous population. J. Math. Biol. 29, 779-790 (1991) · Zbl 0745.92025 · doi:10.1007/BF00160192
[51] Lin, X.: Qualitative analysis of an HIV transmission model. Math. Biosci. 104, 111-134 (1991) · Zbl 0748.92011 · doi:10.1016/0025-5564(91)90033-F
[52] May, R. M., Anderson, R. M.: Regulation and stability of host-parasite population interactions II: Destabilizing processes. J. Anim Ecol 47, 248-267 (1978)
[53] May, R. M., Anderson, R. M.: Population biology of infectious diseases II. Nature 280, 455-461 (1979) · doi:10.1038/280455a0
[54] McNeill, W. H.: Plagues and People. Blackwell, Oxford (1976)
[55] Mena-Lorca, J.: Periodicity and stability in epidemiological models with disease-related deaths. Ph.D. Thesis: University of Iowa (1988)
[56] Mena-Lorca, J., Hethcote, H. W.: Dynamic models of infectious diseases as regulators of population sizes. J. Math. Biol. 30, 693-716 (1992) · Zbl 0748.92012
[57] Miller, R. K., Michel, A. N.: Ordinary Differential Equations. New York: Academic Press, (1982) · Zbl 0552.34001
[58] Plowright, W.: The effects of rinderpest and rinderpest control on wildlife in Africa. Symp. Zool. Soc. Lond. 60, 175-199 (1982)
[59] Pugliese, A.: Population models for diseases with no recovery. J. Math. Biol. 28, 65-82 (1990) · Zbl 0727.92023 · doi:10.1007/BF00171519
[60] Pugliese, A.: An SEI epidemic model with varying population size. In: Differential Equation Models in Biology, Epidemiology and Ecology, pp. 121-138, Busenberg, S., Martelli, M. (eds.). Lecture Notes in Biomathematics 92. Berlin Heidelberg New York: Springer (1991) · Zbl 0735.92022
[61] Ricker, W. E.: Stock and recruitment. J. Fish. Res. Bd. Can 11, 559-623 (1954)
[62] Swart, J. H.: Hopf bifurcation and stable limit cycle behavior in the spread of infectious diesease, with special application to fox rabies. Math. Biosci. 95, 199-207 (1989) · Zbl 0687.92013 · doi:10.1016/0025-5564(89)90033-3
[63] Thieme, H. R.: Persistence under relaxed point-dissipativity (with Application to an Endemic Model), SIAM J. Math. Anal. 24, 407-435 (1993) · Zbl 0774.34030 · doi:10.1137/0524026
[64] Thieme, H. R.: Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations, Math. Biosci. 111, 99-130 (1992) · Zbl 0782.92018 · doi:10.1016/0025-5564(92)90081-7
[65] Thieme, H. R., Castillo-Chavez, C. C.: On the role of variable infectivity in the dynamics of human immunodeficiency virus. In: Mathematical and Statistical Approaches to AIDS Epidemiology, pp. 157-176. Lecture Notes in Biomathematics 83. Berlin Heidelberg New York: Springer (1989) · Zbl 0687.92009
[66] Van Riper, C. III, Van Riper, S.G., Goff, M. L, Laird, M.: The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecological Monographs 56, 327-344 (1986) · doi:10.2307/1942550
[67] Zhou, J.: An epidemiological model with population size dependent incidence. Rocky Mt. J. Math. 24, No.1 (to be published)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.