On approximately convex functions. (English) Zbl 0823.26006

Let \(D\) be a convex subset of a real vector space \(X\) and \(\varepsilon\) a nonnegative constant. A real valued function \(f\) on \(D\) is \(\varepsilon\)- convex if \(f(tx+ (1- t)y)- tf(x)- (1- t) f(y)\leq \varepsilon\) and \(\varepsilon\)-Wright-convex if \(f(tx+ (1- t)y)+ f((1- t)x+ ty)- f(x)- f(y)\leq 2\varepsilon\) \((x, y\in [0, 1])\). A typical result states that \(\varepsilon\)-Wright-convex functions, bounded from below on a neighbourhood of an interior point of \(D\), are \(2\varepsilon\)-convex.


26A51 Convexity of real functions in one variable, generalizations
26B25 Convexity of real functions of several variables, generalizations
39B72 Systems of functional equations and inequalities
Full Text: DOI


[1] E. F. Bechenbach, Convex functions, Bull. Amer. Math. Soc. 54 (1948), 439 – 460. · Zbl 0041.38003
[2] D. H. Hyers and S. M. Ulam, Approximately convex functions, Proc. Amer. Math. Soc. 3 (1952), 821 – 828. · Zbl 0047.29505
[3] Z. Kominek, On additive and convex functionals, Rad. Mat. 3 (1987), no. 2, 267 – 279 (English, with Serbo-Croatian summary). · Zbl 0643.39006
[4] Zygfryd Kominek, Convex functions in linear spaces, Prace Naukowe Uniwersytetu Śląskiego w Katowicach [Scientific Publications of the University of Silesia], vol. 1087, Uniwersytet Śląski, Katowice, 1989. With Polish and Russian summaries. · Zbl 0699.46005
[5] Z. Kominek and M. Kuczma, Theorems of Bernstein-Doetsch, Piccard and Mehdi and semilinear topology, Arch. Math. (Basel) 52 (1989), no. 6, 595 – 602. · Zbl 0683.46006
[6] Marek Kuczma, An introduction to the theory of functional equations and inequalities, Prace Naukowe Uniwersytetu Śląskiego w Katowicach [Scientific Publications of the University of Silesia], vol. 489, Uniwersytet Śląski, Katowice; Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1985. Cauchy’s equation and Jensen’s inequality; With a Polish summary. · Zbl 0555.39004
[7] Marek Kuczma, An example of semilinear topologies, Stochastica 12 (1988), no. 2-3, 197 – 205. · Zbl 0708.46011
[8] C. T. Ng, On midconvex functions with midconcave bounds, Proc. Amer. Math. Soc. 102 (1988), no. 3, 538 – 540. · Zbl 0659.39004
[9] C. T. Ng, Functions generating Schur-convex sums, General inequalities, 5 (Oberwolfach, 1986) Internat. Schriftenreihe Numer. Math., vol. 80, Birkhäuser, Basel, 1987, pp. 433 – 438. · Zbl 0634.39014
[10] A. Wayne Roberts and Dale E. Varberg, Convex functions, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1973. Pure and Applied Mathematics, Vol. 57. · Zbl 0271.26009
[11] Frederick A. Valentine, Convex sets, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Toronto-London, 1964. · Zbl 0129.37203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.