×

zbMATH — the first resource for mathematics

Lévy flights and related topics in physics. Proceedings of the international workshop, held at Nice, France, 27-30 June, 1994. (English) Zbl 0823.00016
Lecture Notes in Physics. 450. Berlin: Springer-Verlag. xv, 347 p. (1995).

Show indexed articles as search result.

The articles of this volume will be reviewed individually.
Indexed articles:
Tsinober, A., Variability of anomalous transport exponents versus different physical situations in geophysical and laboratory turbulence, 3-33 [Zbl 0829.76041]
Novikov, Evgeny A., Conditionally-averaged dynamics of turbulence, new scaling and stochastic modelling, 35-50 [Zbl 0834.76039]
Weeks, Eric R.; Solomon, T. H.; Urbach, Jeffrey S.; Swinney, Harry L., Observation of anomalous diffusion and Lévy flights, 51-71 [Zbl 0825.76007]
Rom-Kedar, Vered; Dvorkin, Yona; Paldor, Nathan, Chaotic Lagrangian motion on a rotating sphere, 72-87 [Zbl 0837.76090]
Hayot, F.; Wagner, L., Lévy walks and lattice gas hydrodynamics, 88-95 [Zbl 0831.76007]
Kahane, Jean-Pierre, Definition of stable laws, infinitely divisible laws, and Lévy processes, 99-109 [Zbl 0841.60010]
Mandelbrot, Benoît B., Introduction to fractal sums of pulses, 110-123 [Zbl 0829.60032]
Fannjiang, Albert, Time scales in noisy conservative systems, 124-139 [Zbl 0836.60069]
Blank, Michael, Geometric constructions in multifractality formalism, 140-149 [Zbl 0829.28003]
Geisel, T., Lévy walks in chaotic systems: Useful formulas and recent applications, 153-173 [Zbl 0829.60068]
Benkadda, Sadruddin; Ragot, Brigitte R.; Elskens, Yves, Transport and large scale stochasticity for a nonperiodic generalisation of the standard map, 174-181 [Zbl 0829.60098]
Ott, Edward; Sommerer, John C.; Antonsen, Thomas M. jun.; Venkataramani, Shankar, Blowout bifurcations: Symmetry breaking of spatially symmetric chaotic states, 182-195 [Zbl 0829.60069]
Klafter, J.; Zumofen, G.; Shlesinger, M. F., Lévy description of anomalous diffusion in dynamical systems, 196-215 [Zbl 0829.60070]
Zaslavsky, G. M., From Lévy flights to the fractional kinetic equation for dynamical chaos, 216-236 [Zbl 0829.60071]
Bouchaud, J. P., More Lévy distributions in physics, 239-250 [Zbl 0829.60072]
Fogedby, Hans C., Aspects of Lévy flights in a quenched random force field, 251-261 [Zbl 0830.60098]
Frisch, Uriel; Frisch, Hélène, Universality of escape from a half-space for symmetrical random walks, 262-268 [Zbl 0829.60061]
Tsallis, Constantino; de Souza, André M. C.; Maynard, Roger, Derivation of Lévy-type anomalous superdiffusion from generalized statistical mechanics, 269-289 [Zbl 0829.60073]
Floriani, Elena; Trefán, György; Grigolini, Paolo; West, Bruce J., A dynamical model leading to the breakdown of the Green-Kubo predictions, 290-299 [Zbl 0831.60092]
Mantegna, Rosario N.; Stanley, H. Eugene, Ultra-slow convergence to a Gaussian: The truncated Lévy flight, 300-312 [Zbl 0831.60105]
Peng, C.-K.; Hausdorff, J. M.; Mietus, J. E.; Havlin, S.; Stanley, H. E.; Goldberger, A. L., Fractals in physiological control: From heart beat to gait, 315-330 [Zbl 0828.92011]
Stanley, H. E.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Peng, C.-K.; Simons, M.; Stanley, M. H. R., Long-range correlations and generalized Lévy walks in DNA sequences, 331-347 [Zbl 0828.92016]

MSC:
00B25 Proceedings of conferences of miscellaneous specific interest
58-06 Proceedings, conferences, collections, etc. pertaining to global analysis
81-06 Proceedings, conferences, collections, etc. pertaining to quantum theory
PDF BibTeX Cite
Full Text: DOI