E, Weinan; Shu, Chi-Wang Small-scale structures in Boussinesq convection. (English) Zbl 0822.76087 Phys. Fluids 6, No. 1, 49-58 (1994). (From authors’ summary.) Two-dimensional Boussinesq convection is studied numerically using two different methods: a filtered pseudospectral method and a high-order accurate ENO scheme. The issue whether finite time singularity occurs for initially smooth flows is investigated. In contrast to reported earlier finite time collapse of the bubble cap, the present numerical results suggest that the strain rate corresponding to the intensification of the density gradient across the front saturates at the bubble cap. Consequently, the thickness of the bubble decreases exponentially. Reviewer: H.S.Takhar (Manchester) Cited in 2 ReviewsCited in 62 Documents MSC: 76R10 Free convection 76E15 Absolute and convective instability and stability in hydrodynamic stability 76M25 Other numerical methods (fluid mechanics) (MSC2010) 76M20 Finite difference methods applied to problems in fluid mechanics Keywords:filtered pseudospectral method; high-order accurate ENO scheme; finite time singularity; bubble cap; density gradient PDF BibTeX XML Cite \textit{W. E} and \textit{C.-W. Shu}, Phys. Fluids 6, No. 1, 49--58 (1994; Zbl 0822.76087) Full Text: DOI References: [1] A. Pumir and E. D. Siggia, ”Development of singuler solutions to the axisymmetric Euler equations,” Phys. Fluids A 4, 1472 (1992).PFADEB0899-8213 · Zbl 0825.76121 [2] X. Wang and A. Bhattacharjee, ”Is there a finite-time singularity in axisymmetric Euler flows?,” in Toplogical Aspects of the Dynamics of Fluids and Plasmas, edited by H. K. Moffatt et al. (1992), pp. 303–308. · Zbl 0800.76079 [3] C. Anderson and C. Greengard, ”The vortex ring merger problem at infinite Reynolds number,” Commun. Pure Appl. Math. 42, 1123 (1989).CPMAMV0010-3640 · Zbl 0689.76011 [4] A. Pumir and E. D. Siggia, ”Collapsing solutions to the 3-D Euler equations,” Phys. Fluids A 2, 220 (1990).PFADEB0899-8213 · Zbl 0696.76070 [5] M. J. Shelley, D. E. Meiron, and S. A. Orszag, ”Dynamical aspects of vortex reconnection of perturbed anti-parallel vortex tubes,” J. Fluid Mech. 246, (1993).JFLSA70022-1120 · Zbl 0781.76028 [6] A. Majda, ”Vorticity, turbulence, and acoustics in fluid flow,” SIAM Rev. 33, 349 (1991).SIREAD0036-1445 · Zbl 0850.76278 [7] R. Grauer and T. Sideris, ”Numerical computation of 3D incompressible ideal fluids with swirl,” Phys. Rev. Lett. 67, 3511 (1991).PRLTAO0031-9007 [8] R. Caflisch, ”Singularity formation for complex solutions of the 3D incompressible Euler equations,” preprint (1992). [9] S. Childress, ”Nearly two-dimensional solutions of Euler’s equations,” Phys. Fluids 30, 944 (1987).PFLDAS0031-9171 · Zbl 0645.76018 [10] J. T. Beale, T. Kato, and A. Majda, ”Remarks on the breakdown of smooth solutions for the 3-D Euler equations,” Commun. Math Phys. 94, 61 (1984).CMPHAY0010-3616 · Zbl 0573.76029 [11] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics (Springer-Verlag, New York, 1987). · Zbl 0717.76004 [12] H. Vandeven, ”Family of spectral filters for discontinuous problems,” J. Sci. Comput. 6, 159 (1991).JSCOEB0885-7474 · Zbl 0752.35003 [13] C.-W. Shu and S. Osher, ”Efficient implementation of essentially non-oscillatory shock capturing schemes,” J. Comput. Phys. 77, 439 (1988).JCTPAH0021-9991 · Zbl 0653.65072 [14] C.-W. Shu and S. Osher, ”Efficient implementation of essentially non-oscillatory shock capturing schemes, II,” J. Comput. Phys. 83, 32 (1989).JCTPAH0021-9991 · Zbl 0674.65061 [15] C.-W. Shu, T. A. Zang, G. Erlebacher, D. Whitaker, and S. Osher, ”High order ENO schemes applied to two- and three-dimensional compressible flow,” Appl. Num. Math. 9, 45 (1992).ANMAEL0168-9274 · Zbl 0741.76052 [16] W. E and C. W. Shu, ”A numerical resolution study of high order ENO schemes applied to incompressible flows,” to appear in J. Comput. Phys. [17] G. K. Batchelor, ”The stability of a large gas bubble moving through a liquid,” J. Fluid Mech. 184, 399 (1987).JFLSA70022-1120 [18] W. E and C. W. Shu, ”Numerical study of the small scale structures in Boussinesq convection,” ICASE Report No. 92–40, 1992. [19] A. Chorin, ”The evolution of a turbulent vortex,” Commun. Math. Phys. 83, 517 (1982).CMPHAY0010-3616 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.