# zbMATH — the first resource for mathematics

Singular perturbations as a selection criterion for periodic minimizing sequences. (English) Zbl 0821.49015
Mathematical models of solid-solid phase transformations and the simpler cases of liquid-vapour, and the simple problem of sailing into the wind, produce energy functionals that are not weakly lower semicontinuous in the setting of approximate Sobolev space. The simplest example is the minimization problem for the functional $\int^ 1_ 0 \bigl[ (u_ x^ 2 - 1)^ 2 + u^ 2 \bigr] dx,$ with periodic boundary conditions.
Inclusion of surface energy leads to a perturbed functional: $\int^ 1_ 0 \bigl[ \varepsilon u^ 2_{xx} + (u^ 2_ x - 1)^ 2 + u^ 2 \bigr] dx.$ To improve generality of his results the author considers a double-well potential $$W$$, with $$W(-1) = W(1) = 0$$, $$W(z) = W(-z)$$, $$W \in C^ 3$$, $$W''(\pm 1) > 0$$, $$W''(0) < 0$$, $$\sigma = W'<0$$ on $$(- \infty, -1) \cup (0,1)$$, $$\sigma > 0$$ on $$(-1,0) \cup (1, \infty)$$, $$\lim_{z \to \pm \infty} \sigma (z) > 0$$, and the functional $I^ \varepsilon = \int^ 1_ 0 \bigl[ \varepsilon^ 2 u^ 2_{xx} + W(u_ x) + u^ 2 \bigr] dx$ and $$A_ 0 = 2 \int^{+1}_{-1} W^{1/2} (z)dz$$. He proves that there exists $$\varepsilon_ 0 > 0$$ such that for any $$\varepsilon \in (0, \varepsilon_ 0)$$ the following is true: If $$u^ \varepsilon$$ minimizes $$I^ \varepsilon$$ in the space of periodic functions $$H^ 2_ \#(0,1)$$ then $$u^ \varepsilon$$ is periodic with a minimal period of $$P^ \varepsilon : P^ \varepsilon = 2(6A_ 0 \varepsilon)^{1/3} + O(\varepsilon^{2/3})$$. Moreover, $$u^ \varepsilon (x + {\varepsilon \over 2}) = - u^ \varepsilon (x)$$ for all $$x \in (0,1)$$, and $I^ \varepsilon (u^ \varepsilon) = {1 \over 4} (6A_ 0 \varepsilon)^{2/3} +O (\varepsilon^{4/3}).$ Therefore there are at most two distinct (up to translation) minimizers of $$I^ \varepsilon$$, and there is a minimizer $$u^ \varepsilon$$ such that $u^ \varepsilon (0) = u^ \varepsilon \left( {1 \over 2} \right) = 0, \quad u^ \varepsilon \left( {1 \over 2} - x \right) = - u^ \varepsilon \left( {1 \over 2} + x \right).$ The author interprets this result by considering transformation of medium carbon steel from austenite (body centred lattice) to martensite (face centred lattice particles), where martensitic phase appears in certain ratio.
In the next section the author collects some estimates for the functional $J_ \ell (v) = \int^{+ 1/2}_{- 1/2}(\varepsilon^ 2 \ell^{-1} v^ 2_{xx} + \ell W(v_ x) + \ell^ 3 v^ 2)dx,$ including the study of the corresponding Euler-Lagrange equation, bounds for eigenvalues of the linearized Euler-Lagrange operator, and stability. There are several detailed results which cannot be listed in a short review. For example, the author proves that for the Dirichlet conditions the minimizer of $$I^ \varepsilon (u)$$ is the same in $$H^ 2 \cap H^ 1_ 0$$ as in $$H^ 2_ \#$$.
Some comments: This is an excellent article containing many interesting results and comments. The author mentions the $$\Gamma$$-convergence (i.e., convergence of the minimizers, rather than in Sobolev norms) and ignores the more difficult concept of $$G$$-convergence of Lurie and Cherkaev. There is a need for a monograph comparing these approaches with the “classical” perturbation theories, multiple scales, and the probabilistic theory proposed many years ago by Avner Friedman. This remark implies no criticism of this outstanding paper.
Reviewer: V.Komkov (Roswell)

##### MSC:
 49J45 Methods involving semicontinuity and convergence; relaxation 34E15 Singular perturbations, general theory for ordinary differential equations 34C25 Periodic solutions to ordinary differential equations 35M10 PDEs of mixed type
Full Text:
##### References:
 [1] Agmon, S.: Exponential decay of solutions of second order elliptic equations, Princeton: Princeton University Press 1982 · Zbl 0503.35001 [2] Amelincks, S., Tendeloo, G. van, Landuyt, J. van: EM and ED studies of phase transformations and phase stability. Mater. Sci. Forum3, 123-145 (1985) · doi:10.4028/www.scientific.net/MSF.3.123 [3] Arlt, G.: Twinning in ferroelectric and ferroelastic ceramics: stress relief. J. Mater. Sci.22, 2655-2666 (1990) · doi:10.1007/BF00584864 [4] Attouch, H.: Variational convergence of functions and operators. London: Pitman 1984 · Zbl 0561.49012 [5] Aviles, P., Giga, A.: A mathematical problem related to the physical theory of liquid crystals. Proc. Cent. Math. Anal. Aust. Natl. Univ.12, 1-16 (1987) [6] Singularities and rank-1 properties of Hessian measures. Duke Math. J.58, 441-467 (1989) · Zbl 0711.49062 [7] Baldo, S.: Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids, Ann. Inst. Henri Poincaré, Anal. Nonlinéaire (to appear) [8] Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of the energy. Arch. Rat. Mech. Anal.100, 13-52 (1987) · Zbl 0629.49020 · doi:10.1007/BF00281246 [9] Ball, J.M., James, R.D.: Proposed experimental tests of a theory of fine structure and the two-well problem. Philos. Trans. R. Soc. Lond.A 338, 389-450 (1992) · Zbl 0758.73009 [10] Basinski, Z., Christian, J.: Experiments on the martensitic transformation in single crystals of indium-thallium alloys. Acta Met.2, 148-166 (1954) · doi:10.1016/0001-6160(54)90104-2 [11] Barsch, G., Horovitz, B., Krummhansl, J.: Dynamics of twin boundaries in martensites. Phys. Rev. Lett.59, 1251-1254 (1987) · doi:10.1103/PhysRevLett.59.1251 [12] Bowles, J.S., MacKenzie, J.K.: The cristallography of martensitic transformations, parts I and II. Acta Met.2, 129-137, 138-147 (1954) · doi:10.1016/0001-6160(54)90103-0 [13] Carr, J., Gurtin, M.E., Slemrod, M.: Structured phase transitions on a finite interval. Arch. Rat. Mech. Anal.86, 317-351 (1984) · Zbl 0564.76075 · doi:10.1007/BF00280031 [14] Carr, J., Pego, R.L.: Metastable patterns in solutions of ut=?2uxx?f(u). Commun. Pure Appl. Math.42, 523-576 (1989) · Zbl 0685.35054 · doi:10.1002/cpa.3160420502 [15] De Giorgi, E.: Convergence problems for functions and operators. Proc. Int. Meeting on ?Recent methods in nonlinear analysis?, Rene 1978 (eds. De Giorgi E. and Magenes E.) Mosco Pitagora, Bologna, pp. 131-188 [16] De Giorgi, E., Dal Maso, G.: ?-convergence and calculus of variations. In: Cecconi, J.P., Zolezzi T. (eds.) Mathematical theories of optimization (Lect. Notes Math.979, pp 121-143) Berlin Heidelberg New York: Springer 1983 · Zbl 0511.49007 [17] Fonseca, I.: Phase transitions of elastic solid materials. Arch. Rat. Mech. Anal.107, 195-223 (1989) · Zbl 0751.73005 · doi:10.1007/BF01789609 [18] Fonseca, I., Tartar, L.: The gradient theory of phase transitions for systems with two potential wells. Proc. R. Soc. Edinb.111A, 89-102 (1989) · Zbl 0676.49005 [19] Guckenheimer, J., Holmes, P.J.: Nonlinear oscillations, dynamical systems and bifurcation of vector fields, 2nd edn. Berlin Heidelberg New York: Springer 1986 · Zbl 0515.34001 [20] Horovitz, G., Barsch G., Krummhansl, J.: Twinbands in martensites: statics and dynamics Phys. Rev.43, 1021-1033 (1991) · doi:10.1103/PhysRevB.43.1021 [21] Khachaturyan, A.: Some questions concerning the theory of phase transformations in solids. Sov. Phys. -Solid State8 (9), 2163-2168 (1967) [22] Khachaturyan, A.: Theory of structural transformations in solids. New York: J. Wiley 1983 [23] Khachaturyan, A., Shatalov, G.: Theory of macroscopic periodicity for a phase transition in the solid state. Sov. Phys. JETP29 (3), 557-561 (1969) [24] Kohn, R.V., Müller, S.: Branching of twins near a austenite/twinned-martensite interface. Philos. Mag. Ser. A66, 697-715 (1992) · doi:10.1080/01418619208201585 [25] Kohn, R.V., Müller, S.: Surface energy and microstructure in coherent phase transitions. Commun. Pure Appl. Math. (to appear) · Zbl 0803.49007 [26] Kohn, R.V., Sternberg, P.: Local minimizers and singular perturbations. Proc. R. Soc. Edinb. A111, 69-84 (1989) · Zbl 0676.49011 [27] Leizarowitz, A., Mizel, V.J.: One dimensional infinite-horizon variational problems. Arch. Rat. Mech. Anal.106, 161-194 (1989) · Zbl 0672.73010 · doi:10.1007/BF00251430 [28] Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites nonlinéaires. Paris: Dunod 1969 [29] Marsden, J.E., Hughes, T.J.R.: Mathematical foundations of elasticity. Englewood Cliffs: Prentice-Hall 1983 · Zbl 0545.73031 [30] Modica, L.: Gradient theory of phase transitions and minimal interface criteria. Arch. Rat. Mech. Anal.98, 357-383 (1987) · Zbl 0616.76004 · doi:10.1007/BF00251230 [31] Müller, S.: Minimizing sequences for nonconvex functionals, phase transitions and singular perturbations. In: Proc. ?Problems involving change of type?, Stuttgart, 1988, (ed. Kirchgässner, K.) (Lect. Notes Phys.359, pp. 31-43) Berlin Heidelberg New York: Springer 1989 [32] Owen, N.C., Sternberg, P.: Nonconvex variational problems with anisotropic growth. Nonlin. Anal.: Theory, Methods Appl.16, 705-719 (1991) · Zbl 0748.49034 · doi:10.1016/0362-546X(91)90177-3 [33] Reed M., Simon, B.: Methods of modern mathematical physics, vol. IV. New York: Academic Press 1978 · Zbl 0401.47001 [34] Roitburd, A.: The domain structure of crystals formed in the solid phase. Sov. Phys.-Solid State10 (12), 2870-2876 (1969) [35] Roitburd, A.: Martensitic transformation as a typical phase transformation in solids. Solid State Phys.33, 317-390 (1978) · doi:10.1016/S0081-1947(08)60471-3 [36] Wayman, C.M.: Introduction to the theory of martensitic transformations. New York: Macmillan 1964 [37] Wechsler, M.S., Liebermann, D.S., Read, T.A.: On the theory of the formation of martensite. Trans. AIME J. Metals197, 1503-1515 (1953) [38] Zeidler, E.: Nonlinear functional analysis and its applications, vol. I. Berlin Heidelberg New York: Springer 1986 · Zbl 0583.47050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.