zbMATH — the first resource for mathematics

Fast numerical solution of singular integral equations. (English) Zbl 0819.65140
The authors give a numerical solution of singular integral equations by a fast inversion of the principal part and by multigrid methods via an approximate Wiener-Hopf factorization.

65R20 Numerical methods for integral equations
45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type)
Full Text: DOI
[1] A. Brandt and A. Lubrecht, Multilevel matrix multiplication and fast solution of integral equations , J. Comp. Phys. 90 (1991), 348-370. · Zbl 0707.65025 · doi:10.1016/0021-9991(90)90171-V
[2] R.A. DeVore and G.G. Lorentz, Constructive approximation , Springer-Verlag, Berlin, 1993. · Zbl 0797.41016
[3] P.P.B. Eggermont and Ch. Lubich, Operational quadrature methods for Wiener-Hopf integral equations , Math. Comp. 60 (1993), 699-718. JSTOR: · Zbl 0781.65102 · doi:10.2307/2153110 · links.jstor.org
[4] I.C. Gohberg and I.A. Fel’dman, Convolution equations and projection methods for their solution , Transl. Math. Monographs 41 (1974). · Zbl 0278.45008
[5] W. Hackbusch, Multi-grid methods and applications , Springer-Verlag, Berlin, 1985. · Zbl 0595.65106
[6] ——–, Integralgleichungen, Theorie und Numerik , Teubner, Stuttgart, 1989.
[7] W. McLean, S. Prössdorf and W.L. Wendland, A fully-discrete trigonometric collocation method , J. Integral Equations Appl. 5 (1993), 103-129. · Zbl 0781.65094 · doi:10.1216/jiea/1181075730
[8] S. Prössdorf and B. Silbermann, Numerical analysis for integral and related operator equations , Birkhäuser, Basel, 1991. · Zbl 0763.65103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.