zbMATH — the first resource for mathematics

The Kowalewski top 99 years later: a Lax pair, generalizations and explicit solutions. (English) Zbl 0819.58013
Summary: A “natural” Lax pair for the Kowalewski top is derived by using a general group-theoretic approach. This gives a new insight into the algebraic geometry of the top and leads to its complete solution via finite-band integration theory.

37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
14K25 Theta functions and abelian varieties
22E65 Infinite-dimensional Lie groups and their Lie algebras: general properties
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
70E15 Free motion of a rigid body
70H05 Hamilton’s equations
Full Text: DOI
[1] Kowalewski, S.: Sur le probl?me de la rotation d’un corps solide autour d’un point fixe. Acta Math.12, 177-232 (1889) · JFM 21.0935.01
[2] K?tter, F.: Sur le cas trait? par Mme Kowalewski de rotation d’un corps solide autour d’un point fixe. Acta Math.17, 209-264 (1893)
[3] Dubrovin, B.A., Krichever, J.M., Novikov, S.P.: Integrable systems. I. In: Modern problems in mathematics. Fundamental developments. Vol. 4 (Dynamical systems 4) Itogi Nauki i Tekhniki. Moscow: VINITI 1985, pp. 179-285
[4] Perelomov, A.M.: Lax representations for the systems of S. Kowalewskaya type. Commun. Math. Phys.81, 239-243 (1981) · Zbl 0478.70005
[5] Reyman, A.G., Semenov-Tian-Shansky, M.A.: Lax representation with a spectral parameter for the Kowalewski top and its generalizations. Lett. Math. Phys.14, 55-62 (1987) · Zbl 0627.58027
[6] Reyman, A.G., Semenov-Tian-Shansky, M.A.: Reduction of Hamiltonian systems, affine Lie algebras and Lax equations I, II. Invent. Math.54, 81-100 (1979);63, 423-432 (1981) · Zbl 0415.58012
[7] Reyman, A.G., Semenov-Tian-Shansky, M.A.: A new integrable case of the motion of the 4-dimensional rigid body. Commun. Math. Phys.105, 461-472 (1986) · Zbl 0606.58029
[8] Haine, L., Horozov, E.: A Lax pair for Lowalewski’s top. Physica29 D, 173-180 (1987) · Zbl 0627.58026
[9] Adler, M., van Moerbeke, P.: The Kowalewski and H?non-Heiles motions as Manakov geodesic flows onSO(4) ? A two-dimensional family of Lax pairs. Commun. Math. Phys.113, 659-700 (1988) · Zbl 0647.58022
[10] Horozov, E., van Moerbeke, P.: Abelian surfaces of polarization (1.2) and Kowalewski’s top. Commun. Pure Appl. Math. (to appear) 1988 · Zbl 0689.58020
[11] Dubrovin, B.A., Matveev, V.B., Novikov, S.P.: Nonlinear equations of KdV type, finite-zone linear operators and abelian varieties. Usp. Mat. Nauk31, 55-136 (1976) [Russ. Math. Surv.31, 59-146 (1976)] · Zbl 0326.35011
[12] Veselov, A.P., Novikov, S.P.: Poisson brakcets and complex tori. Trudy Mos. Mat. O.-va165, 49-61 (1984) · Zbl 0565.58022
[13] Bobenko, A.I.: Solutions of the classical integrable tops via the inverse scattering method. LOMI Preprint P-10-87, Leningrad 1987
[14] Bogoyavlensky, O.I.: Euler equations on finite-dimensional Lie algebras arising in physical problems. Commun. Math. Phys.95, 307-315 (1984) · Zbl 0581.58022
[15] Komarov, I.V.: A generalization of the Kowalewski top. Phys. Lett.123 A, 14-15 (1987)
[16] Reyman, A.G., Semenov-Tian-Shansky, M.A.: Group-theoretical methods in the theory of integrable systems. In: Modern Problems in Mathematics. Fundamental Developments, Vol. 16 (Dynamical systems 7) Itogi Nauki i Tekhniki. Moscow: VINITI 1987, pp. 119-195
[17] Reyman, A.G.: Integrable Hamiltonian systems connected with graded Lie algebras. In: Differential geometry. Lie groups and mechanics II. Zap. Nauchn. Semin. LOMI95, 3-54 (1980) [J. Soviet Math.19, 1507-1545 (1982)]
[18] Guillemin, V., Sternberg, S.: The moment map and collective motion. Ann. Phys.127, 220-253 (1980) · Zbl 0453.58015
[19] Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: Wiley 1978 · Zbl 0408.14001
[20] Fay, J.D.: Theta functions on Riemann surfaces. Lecture Notes in Mathematics, vol.352. Berlin, Heidelberg, New York: Springer 1973 · Zbl 0281.30013
[21] Bobenko, A.I., Kuznetsov, V.B.: Lax representation for the Goryachev-Chaplygin top and new formulae for its solutions. J. Phys. A21, 1999-2006 (1988) · Zbl 0662.35104
[22] Reyman, A.G., Semenov-Tian-Shansky, M.A.: Lax representation with a spectral parameter for the Kowalewski top and its generalizations. In: Plasma theory and nonlinear and turbulent processes in physics (Proceedings of the 1987 Kiev conference), pp. 135-152. Singapore: World Scientific 1988 · Zbl 0648.70001
[23] Reyman, A.G.: New results on the Kowalewski top. In: Nonlinear Evolutions (Proceedings of the IV Workshop on Nonlinear Evolution Equations and Dynamical Systems, Balaruc-les-Bains, 1987). Singapore: World Scientific 1988 · Zbl 0629.93057
[24] Yehia H.: New integrable cases of the motion of a gyrostat. Vestn. Mosk. Univ., Ser. I, No.4, 88-90 (1987) · Zbl 0661.70012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.