zbMATH — the first resource for mathematics

Fredholm determinants, differential equations and matrix models. (English) Zbl 0813.35110
Orthogonal polynomial random matrices of N. N. Hermitian matrices lead to Fredholm determinants of integral operators with kernel \((f(x)g(y) - g(x)f(y))/(x-y)\). This paper shows that these Fredholm determinants can be expressed in terms of solutions of partial differential equations as long as \(f\) and \(g\) satisfy some kinds of differentiation formulae. The model applies to sine, Airy and Bessel kernels as well as Hermite, Laguerre and Jacobi ensembles. The analysis of these equations provides explicit solution in terms of Painlevé transcendents for the distribution functions of the largest and smallest eigenvalues in the finite Hermite and Laguerre ensembles, and for the distributions functions of the largest and smallest singular values of rectangular matrices of which the entries are independent identically distributed complex Gaussian variables.

35Q53 KdV equations (Korteweg-de Vries equations)
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
Full Text: DOI arXiv
[1] Barouch, E., McCoy, B.M., Wu, T.T.: Zero-field susceptibility of the two-dimensional Ising model nearT c. Phys. Rev. Letts.31, 1409–1411 (1973); Tracy, C., McCoy, B.M.: Neutron scattering and the correlation functions of the Ising model nearT c. Phys. Rev. Letts.31, 1500–1504 (1973)
[2] Basor, E.L., Tracy, C.A., Widom, H.: Asymptotics of level spacing distributions for random matrices. Phys. Rev. Letts.69, 5–8 (1992) · Zbl 0968.82501
[3] Bassom, A.P., Clarkson, P.A., Hicks, A.C., McLeod, J.B.: Integral equations and exact solutions for the fourth Painlevé transcendent. Proc. R. Soc. Lond. A437, 1–24 (1992) · Zbl 0751.34002
[4] Bauldry, W.C.: Estimates of asymmetric Freud polynomials. J. Approx. Th.63, 225–237 (1990) · Zbl 0716.42019
[5] Bonan, S.S., Clark, D.S.: Estimates of the Hermite and the Freud polynomials. J. Approx. Th.63, 210–224 (1990) · Zbl 0716.42018
[6] Bowick, M.J., Brézin, E.: Universal scaling of the tail of the density of eigenvalues in random matrix models. Phys. Letts.B268, 21–28 (1991)
[7] Brézin, E.: LargeN limit and discretized two-dimensional quantum gravity. In: Gross, D.J., Piran, T., Weinberg, S. (eds.) Two Dimensional Quantum Gravity and Random Surfaces, Singapore: World Scientific Publ., 1992 pp. 1–40
[8] Brézin, E., Kazakov, V.A.: Exactly solvable field theories of closed strings. Phys. Letts.B236, 144–150 (1990)
[9] Chen, Y.: Private communication
[10] Clarkson, P.A., McLeod, J.B.: Integral equations and connection formulae for the Painlevé equations. In: Levi, D., Winternitz, P. (eds.) Painlevé Transcendents: Their Asymptotics and Physical Applications, New York: Plenum Press, 1992, pp. 1–31 · Zbl 0856.34009
[11] David, F.: Non-perturbative effects in matrix models and vacua of two dimensional gravity. SPhT/92-159 preprint
[12] Douglas, M.R.: Strings in less than one dimension and the generalized KdV hierarchies. Phys. Letts.B238, 176–180 (1990) · Zbl 1332.81211
[13] Douglas, M.R., Shenker, S.H.: Strings in less than one dimension. Nucl. Phys.B335, 635–654 (1990)
[14] Dyson, F.J.: Statistical theory of energy levels of complex systems, I, II, and III. J. Math. Phys.3, 140–156; 157–165; 166–175 (1962) · Zbl 0105.41604
[15] Dyson, F.J.: Fredholm determinants and inverse scattering problems. Commun. Math. Phys.47, 171–183 (1976) · Zbl 0323.33008
[16] Dyson, F.J.: The Coulomb fluid and the fifth Painlevé transcendent. IASSNSSHEP-92/43 preprint, to appear in the proceedings of a conference in honor of C.N. Yang. S.-T. Yau (ed.)
[17] Edelman, A.: Eigenvalues and condition numbers of random matrices. Ph.D. thesis, Mass. Inst. of Tech., 1989 · Zbl 0678.15019
[18] Erdélyi, A. (ed.): Higher Transcendental Functions,Vols. I and II New York: McGraw-Hill, 1953 · Zbl 0052.29502
[19] Forrester, P.J.: The spectrum edge of random matrix ensembles. Nucl. Phys.B402, [FS], 709–728 (1993) · Zbl 1043.82538
[20] Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products. Corrected and Enlarged Edition. San Diego: Academic, 1980 · Zbl 0521.33001
[21] Gross, D.J., Migdal, A.A.: Nonperturbative two-dimensional quantum gravity. Phys. Rev. Letts.64, 127–130 (1990); A nonperturbative treatment of two-dimensional quantum gravity. Nucl. Phys.B340, 333–365 (1990) · Zbl 1050.81610
[22] Its, A.R., Izergin, A.G., Korepin, V.E., Slavnov, N.A.: Differential equations for quantum correlation functions. Int. J. Mod. PhysicsB4, 1003–1037 (1990) · Zbl 0719.35091
[23] Jimbo, M.: Monodromy problem and the boundary condition for some Painlevé equations. Publ. RIMS, Kyoto Univ.18, 1137–1161 (1982) · Zbl 0535.34042
[24] Jimbo, M., Miwa, T.: Monodromy preserving deformations of linear ordinary differential equations with rational coefficients. II. Physica2D, 407–448 (1981) · Zbl 1194.34166
[25] Jimbo, M., Miwa, T., Môri, Y., Sato, M.: Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Physica1D, 80–158 (1980) · Zbl 1194.82007
[26] McCoy, B.M., Tracy, C.A., Wu, T.T.: Painlevé functions of the third kind. J. Math. Phys.18, 1058–1092 (1977) · Zbl 0353.33008
[27] Mahoux, G., Mehta, M.L.: Level spacing functions and nonlinear differential equations. J. Phys. I. France3, 697–715 (1993)
[28] Mehta, M.L.: Random Matrices. 2nd ed. San Diego: Academic, 1991 · Zbl 0780.60014
[29] Mehta, M.L.: A non-linear differential equation and a Fredholm determinant. J. de Phys. I. France2, 1721–1729 (1992)
[30] Moore, G.: Matrix models of 2D gravity and isomonodromic deformation. Prog. Theor. Physics Suppl. No.102, 255–285 (1990) · Zbl 0875.33006
[31] Muttalib, K.A., Chen Y., Ismail, M.E.H., Nicopoulos, V.N.: A new family of unitary random matrices. Phys. Rev. Lett.71, 471–475 (1993) · Zbl 0972.82545
[32] Nagao, T., Wadati, M.: Correlation functions of random matrix ensembles related to classical orthogonal polynomials. J. Phys. Soc. Japan60, 3298–3322 (1991)
[33] Okamoto, K.: Studies on the Painlevé equations II. Fifth Painlevé equationP v. Japan. J. Math.13, 47–76 (1987) · Zbl 0694.34005
[34] Okamoto, K.: Studies on the Painlevé equations III. Second and Fourth Painlevé Equations,P II andP IV. Math. Ann.275, 221–255 (1986) · Zbl 0589.58008
[35] Okamoto, K.: Studies on the Painlevé equations IV. Third Painlevé equationP III. Funkcialaj Ekvacioj30, 305–332 (1987)
[36] Porter, C.E.: Statistical Theory of Spectra: Fluctuations. New York: Academic, 1965 · Zbl 0144.22603
[37] Tracy, C.A., Widom, H.: Introduction to random matrices. In: Geometric and Quantum Aspects of Integrable Systems. G. F. Helminck (ed.) Lecture Notes in Physics, Vol. 424, Berlin, Heidelberg, New York: Springer, 1993, pp. 407–424
[38] Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys.159, 151–174 (1994) · Zbl 0789.35152
[39] Tracy, C.A., Widom, H.: Level-spacing distributions and the Bessel kernel. Commun. Math. Phys.161, 289–309 (1994) · Zbl 0808.35145
[40] Widom, H.: The asymptotics of a continuous analogue of orthogonal polynomials. To appear in J. Approx. Th. · Zbl 0801.42017
[41] Wu, T.T., McCoy, B.M., Tracy, C.A., Barouch, E.: Spin-spin correlation functions of the two-dimensional Ising model: Exact theory in the scaling region. Phys. Rev.B13, 316–374 (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.