zbMATH — the first resource for mathematics

Dynamics of tumor interaction with the host immune system. (English) Zbl 0811.92014
The author develops a reaction-diffusion model for the initial growth of a tumor following a mutation that affects the biochemical control mechanisms of cell division. He derives a necessary and sufficient condition for the existence of travelling wave solutions. The results suggest, biologically, that for certain types of mutation growing tumors can initially contain a significant portion of normal cells. Moreover, the model predicts that there is a critical level of immune response, above which the immune system will prevent the initial growth of the tumor.
Reviewer: R.Repges (Aachen)

92C50 Medical applications (general)
35K57 Reaction-diffusion equations
Full Text: DOI
[1] Van der Bruggen, P.; Traversari, C.; Chomez, P.; Lurquin, C.; De Plaen, E.; Van den Eynde, B.; Knuth, A.; Boon, T., A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melonama, Science, 254, 1643-1647, (1991)
[2] Giovarelli, M.; Comoglio, P.; Forni, G., Induction of resistance or enhancement to a transpantable murine plasmacytoma by transfer of nonimmune leukocytes, Br. J. cancer, 34, 233-238, (1976)
[3] Adam, J., Diffusion models of prevascular and vascular tumor growth—A review, () · Zbl 0729.92542
[4] Adam, J.; Noren, R., Equilibrium model of a vascularized spherical carcinoma with central necrosis—some properties of the solution, Math. biosci., 3, 735-745, (1993) · Zbl 0777.92007
[5] Greenspan, H., On the growth and stability of cell cultures and solid tumors, J. theor. biol., 56, 229-242, (1976)
[6] Maggelakis, S.; Adam, J., Mathematical model for prevascular growth of a spherical carcinoma, Comp. math. modelling, 13, 23-38, (1990) · Zbl 0706.92010
[7] Maggelakis, S., Type alpha and type β transforming growth factors as regulators of cancer cellular growth: A mathematical model, Comp. math. modelling, 18, 9-16, (1993) · Zbl 0792.92013
[8] Kustnetsov, V.A., Dynamics of immune processes during tumor growth, (1992), Nauka, (In Russian)
[9] Nossal, G.J.V., Life, death and the immune system, Scientific American, 269, 53-72, (1993)
[10] Truesdell, C.; Muncaster, R.G., Fundamentals of Maxwell kinetic theory of a simple monoatomic gas, (1980), Academic Press
[11] Bellomo, N.; Palczewski, A.; Toscani, G., Mathematical topics in nonlinear kinetic theory, (1988), World Scientific · Zbl 0702.76005
[12] Herberman, R.B., NK cells and other natural effector cells, (1982), Academic Press
[13] Segel, L., Modelling dynamic phenomena in molecular and cellular biology, (1984), Cambridge University Press · Zbl 0639.92001
[14] Bellomo, N.; Lachowicz, M., Mathematical biology and kinetic theory: evolution of the dominance in a population of interacting organisms, (), 11-20, No. 9
[15] Jager, E.; Segel, L., On the distribution of dominance in a population of interacting anonymous organisms, SIAM J. appl. math., 52, 1442-1468, (1992) · Zbl 0759.92011
[16] Segel, L.; Perelson, A., Computations in shape space: A new approach, (), 321-343
[17] Den Otter, W.; Ruitenberg, E.J., Tumor immunology. mechanisms, diagnosis, therapy, (1987), Elsevier
[18] Steel, G.G., Growth kinetics of tumors, (1977), Clarendon
[19] Bosco, M.; Giovarelli, M.; Forni, M.; Scarpa, S.; Masuelli, L.; Forni, G., Low doses of il-4 injected perilymphatically in tumor-bearing mice inhibit the growth of poorly and apparently nonimmunogenic tumors and induce a tumor specific immune memory, J. immunol., 145, 3136-3143, (1990)
[20] Cavallo, F.; Di Pierro, F.; Giovarelli, M.; Gulino, A.; Vacca, A.; Stoppacciaro, L.A.; Forni, M.; Modesti, A.; Forni, G., Protective and curative potential of vaccination with IL-2 gene-transfected cells from a spontaneous mouse mammary adenocarcinoma, Cancer res., 53, 5067-5070, (1993)
[21] Cavallo, F.; Giovarelli, M.; Gulino, A.; Vacca, A.; Stoppacciaro, L.A.; Modesti, A.; Forni, G., Role of neutrophilis and CD^+T lymphocytes in the primary and memory response to nonimmunogenic murine mammary adenocarcinoma made immunogenic by IL-2 gene transfection, J. immunol., 149, 3627-3635, (1992)
[22] Chover, J.; King, J., The early growth of cancer, J. math. biol., 21, 329-346, (1985) · Zbl 0558.92005
[23] Forni, F.; Comoglio, P.M., Growth of syngeneic tumors in unimmunized newborn and adult hosts, Brit. J. cancer, 27, 120-127, (1973)
[24] Forni, G.; Giovarelli, M.; Santoni, A.; Modesti, A.; Forni, M., Interleukin-2 activated tumor inhibition in vivo depends on the systemic involvement of host immunoreactivity, J. immunol., 138, 4031-4033, (1987)
[25] Forni, G.; Varesio, L.; Giovarelli, M.; Cavallo, G., Dynamic state of a spontaneous immune reactivity towards a mammary adenocarcinoma, (), 167-192
[26] Markovitch, S., The particular role of cell loss in tumor growth, Comp. math. modelling, 18, 83-89, (1993) · Zbl 0805.92015
[27] Anderson, R.; May, R., Infectious diseases of humans, (1991), Oxford University Press
[28] Bellomo, N.; Preziosi, L., Mathematical modelling and scientific computation, (1994), CRC Press
[29] Lin, C.C.; Segel, L., Mathematics applied to deterministic problems in the natural sciences, (1988), SIAM Publ · Zbl 0664.00026
[30] Keener, J.P.; Tyson, J.J., The dynamics of scroll waves in excitable media, SIAM review, 34, 1-39, (1992) · Zbl 0773.35030
[31] Cronin, J., On the mathematical theory of the Hodgkin and Huxley model, (1987), Cambridge Univ. Press
[32] Wigner, E., The unreasonable effectiveness of mathematics in the natural sciences, Comm. pure appl. math., 13, 1-14, (1960) · Zbl 0102.00703
[33] L. Arlotti and N. Bellomo, Population dynamics with stochastic interaction, Transp. Theory Statist. Phys. (to appear) · Zbl 0838.92018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.