×

zbMATH — the first resource for mathematics

Indecomposable baric algebras. (English) Zbl 0811.17034
The authors introduce the concept of indecomposable baric algebras and prove a Krull-Schmidt theorem for algebras satisfying ascending and descending chain conditions. They analyze some well-known examples of genetic algebras with regard to their indecomposability. Counterexamples are given to three natural statements about indecomposability. [For Part II, same journal 196, 233-242 (1994), see the review below].

MSC:
17D92 Genetic algebras
92D10 Genetics and epigenetics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abraham, V.M., A note on train algebras, Proc. Edinburgh math. soc., 2, 20, 53-58, (1976) · Zbl 0361.17007
[2] Costa, R., On train algebras of rank 3, Linear algebra appl., 148, 1-12, (1991) · Zbl 0728.17019
[3] Etherington, I.M.H., Genetic algebras, Proc. roy. soc. Edinburgh, 59, 242-258, (1939) · JFM 66.1209.01
[4] Gonshor, H., Special train algebras arising in genetics, Proc. Edinburgh math. soc., 2, 12, 41-53, (1960) · Zbl 0249.17003
[5] Holgate, Ph., Three aspects of genetic algebras, (1990), presented at XI School of Algebra, São Paulo
[6] Holgate, Ph.; Hentzel, I.; Peresi, L.A., On kth-order Bernstein algebras and stability at the k+1 generation in polyploids, J. math. appl. med. biol., 7, 33-40, (1990) · Zbl 0726.17040
[7] Jacobson, N., Lectures in abstract algebra, Vol. I, (1966), Van Nostrand
[8] Micali, A.; Ouatarra, M., Dupliquée d’une algèbre et le théorème d’etherington, Linear algebra appl., 153, 193-207, (1991) · Zbl 0734.17003
[9] Ouatarra, M., Sur LES algèbres de Bernstein qui sont des T-algèbres, Linear algebra appl., 148, 171-178, (1991)
[10] Walcher, S., Algebras which satisfy a train equation for the first three plenary powers, Arch. math., 56, 547-551, (1991) · Zbl 0741.17020
[11] Worz, A., Algebras in genetics, Lecture notes in biomath., 36, (1980) · Zbl 0431.92017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.