zbMATH — the first resource for mathematics

The role of a transient potassium current in a bursting neuron model. (English) Zbl 0810.92002
Summary: Presented here is a biophysical cell model which can exhibit low- frequency repetitive activity and bursting behavior. The model is developed from previous models [the author et al., Biol. Cybern. 65, 487- 500 (1991); ibid. 69, 87-94 (1993)] for excitability, oscillations and bursting. A stepwise development of the present model shows the contribution of a transient potassium current \((I_ A)\) to the overall dynamics. By changing a limited set of model parameters one can describe different firing patterns; oscillations with frequencies ranging from 2- 200 Hz and a wide range of bursting behaviors in terms of the durations of bursting and quiescence, peak firing frequency and rate of change of the firing frequency.

92C20 Neural biology
92C05 Biophysics
Full Text: DOI
[1] Av-Ron, E., Parnas, H., Segel L. A.: A minimal biophysical model for an excitable and oscillatory neuron. Biol. Cybern. 65, 487–500 (1991) · doi:10.1007/BF00204662
[2] Av-Ron, E., Parnas, H., Segel L. A.: A basic biophysical model for bursting neurons. Biol. Cybern. 69, 87–94 (1993) · doi:10.1007/BF00201411
[3] Barnes, S., Deschênes, M. C.: Contribution of Ca and Ca-activated C1 channels to regenerative depolarization and membrane bistability of cone photoreceptors. J. Neurophysiol. 68, 745–755 (1992)
[4] Christensen, T. A., Mustaparta, H., Hildebrand, J. G.: Discrimination of sex pheromone blends in the olfactory system of the moth. Chem. Senses 14, 463–477 (1989) · doi:10.1093/chemse/14.3.463
[5] Christensen, T. A., Hildebrand, J. G.: Representation of sex-pheromonal information in the insect brain. In: K. B. Døving (ed.), Proc. Tenth Inter. Symp. Olfaction and Taste, Norway: ISOT 1990
[6] Christensen, T. A., Waldrop, B. R., Harrow, I. D., Hildebrand, J. G.: Local interneurons and information processing in the olfactory glomeruli of the moth Manduca sexta. J. Comp. Physiol. A 173, 385–399 (1993) · doi:10.1007/BF00193512
[7] Connor, J. A., Stevens, C. F.: Prediction of repetitive firing behavior from voltage clamp data on an isolated neurone soma. J. Physiol. 213, 31–53 (1971)
[8] Connor, J. A., Walter, D., McKnown, R.: Neural repetitive firing-modifications of the Hodgkin-Huxley axon suggested by experimental results from crustacean axons. Biophys. J. 18, 81–102 (1977) · doi:10.1016/S0006-3495(77)85598-7
[9] FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1 445–466 (1961) · doi:10.1016/S0006-3495(61)86902-6
[10] Hille, B.: Ionic channels of excitable membranes. (2nd ed.) Sunderland, Massachusetts: Sinauer Associates Inc. 1992
[11] Hodgkin, A. L., Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)
[12] Jahnsen, H., Llinäs, R.: Electrophysiological properties of guinea-pig thalamic neurons: An in vitro study. J. Physiol. 349, 205–226 (1984)
[13] Llinäs, R. R.: The role of the intrinsic electrophysiological properties of central neurones in oscillation and resonance. In: Goldbeter A. (ed.). Cell to cell signalling: from experiments to theoretical models, pp. 3–16. London: Academic Press 1989
[14] Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterlin, W. T.: Numerical recipes in C – The art of scientific computing. Cambridge: Cambridge University Press 1988 · Zbl 0661.65001
[15] Rinzel, J.: Excitation dynamics: insights from simplified membrane models. 68th annual meeting of the Fed. Am. Soc. Exp. Bio. St. Louis MO (1984)
[16] Rinzel, J., Lee, Y. S.: Dissection of a model for neuronal parabolic bursting. J. Math. Biol. 25, 653–675 (1987) · Zbl 0628.92016 · doi:10.1007/BF00275501
[17] Rose, R. M., Hindmarsh, J. L.: The assembly of ionic currents in a thalamic neuron I. The three-dimensional model. Proc. R. Soc. Lond. B 237, 267–288 (1989) · doi:10.1098/rspb.1989.0049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.