zbMATH — the first resource for mathematics

Static and free vibrational analysis of beams and plates by differential quadrature method. (English) Zbl 0810.73077
The new approach for application of boundary conditions in the differential quadrature (DQ) method, proposed earlier by the present authors, is extended to generalized force boundary conditions in two dimensions. A variety of problems is then analyzed by the DQ method with the new approach for application of boundary conditions, such as deflections of beams and circular and rectangular plates under nonuniformly distributed loadings, deflection of a rectangular plate on a Winkler foundation, and buckling and free vibrational analyses of circular plates.

74S30 Other numerical methods in solid mechanics (MSC2010)
74H45 Vibrations in dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74K20 Plates
Full Text: DOI
[1] Bellman, R. E., Casti, J.: Differential quadrature and long-term integration. J. Math. Anal. Appl.34, 235-238 (1971). · Zbl 0236.65020 · doi:10.1016/0022-247X(71)90110-7
[2] Bellman, R. E., Kashef, B. G., Casti, J.: Differential quadrature: a technique for the rapid solution of non-linear partial differential equations. J. Comput. Phys.10, 40-52 (1972). · Zbl 0247.65061 · doi:10.1016/0021-9991(72)90089-7
[3] Civan, F., Sliepcevich, C. M.: Differential quadrature for multi-dimensional problems. J. Math. Anal. Appl.101, 423-443 (1984). · Zbl 0557.65084 · doi:10.1016/0022-247X(84)90111-2
[4] Bert, C. W., Jang, S. K., Striz, A. G.: Two new approximate methods for analyzing free vibration of structural components. AIAA J.26, 612-618 (1988). · Zbl 0661.73063 · doi:10.2514/3.9941
[5] Bert, C. W., Jang, S. K., Striz, A. G.: Application of differential quadrature to static analysis of structural components. Int. J. Numer. Methods Eng.28, 561-577 (1989). · Zbl 0669.73064 · doi:10.1002/nme.1620280306
[6] Striz, A. G., Jang, S. K., Bert, C. W.: Nonlinear bending analysis of thin plates by differential quadrature. Thin-Walled Struct.6, 51-62 (1988). · doi:10.1016/0263-8231(88)90025-0
[7] Bert, C. W., Jang, S. K., Striz, A. G.: Nonlinear bending analysis of orthotropic rectangular plates by the method of differential quadrature. Comput. Mech.5, 217-226 (1989). · Zbl 0695.73029 · doi:10.1007/BF01046487
[8] Sherbourne, A. N., Pandey, M. D.: Differential quadrature method in the buckling analysis of beams and composite plates. Comput. Struct.40, 903-913 (1991). · Zbl 0850.73355 · doi:10.1016/0045-7949(91)90320-L
[9] Wang, X., Bert, C. W.: A new approach in applying differential quadrature to static and free vibrational analyses of beams and plates. J. Sound Vibr. (in press). · Zbl 0958.74527
[10] Wang, X., Bert, C. W., Striz, A. G.: Differential quadrature analysis of deflection, buckling, and free vibration of beams and rectangular plates. Unpublished manuscript (1992).
[11] Wang, X., Striz, A. G., Bert, C. W.: Buckling and vibration analysis of skew plates by theDQ method. Unpublished manuscript (1992).
[12] Timoshenko, S., Woinowsky-Krieger, S.: Theory of plates and shells, 2nd ed. New York: McGraw-Hill 1959. · Zbl 0114.40801
[13] Leissa, A. W., Narita, Y.: Natural frequencies of simply supported plates. J. Sound Vibr.70, 221-229 (1980). · Zbl 0428.73056 · doi:10.1016/0022-460X(80)90598-2
[14] Iyengar, N. G. R.: Structural stability of columns and plates. Chichester: Ellis Horwood 1988. · Zbl 0706.73043
[15] Leissa, A. W.: Vibration of plates. NASA SP-160, 1969. · Zbl 0181.52603
[16] Bodine, R. Y.: The fundamental frequencies of a thin flat circular plate simply supported along a circle of arbitrary radius. J. Appl. Mech.26, 666-668 (1959). · Zbl 0100.37802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.