×

zbMATH — the first resource for mathematics

The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. II: Numerical analysis. (English) Zbl 0810.35158
Summary: [For part I see the authors, ibid. 2, No. 3, 233-280 (1991; Zbl 0797.35172).]
We consider the numerical analysis of a parabolic variational inequality arising from a deep quench limit of a model for phase separation of a binary mixture due to Cahn and Hilliard. Stability, convergence and error bounds for a finite element approximation are proven. Numerical simulations in one and two space dimensions are presented.

MSC:
35R35 Free boundary problems for PDEs
65K10 Numerical optimization and variational techniques
35Q35 PDEs in connection with fluid mechanics
35K85 Unilateral problems for linear parabolic equations and variational inequalities with linear parabolic operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Blowey, Euro. J. Appl. Math. 2 pp 233– (1991)
[2] Cerezo, J. Microscopy. 154 pp 215– (1989) · doi:10.1111/j.1365-2818.1989.tb00584.x
[3] DOI: 10.2307/2005996 · Zbl 0367.65056 · doi:10.2307/2005996
[4] DOI: 10.1007/BF01386423 · Zbl 0696.65069 · doi:10.1007/BF01386423
[5] DOI: 10.1137/0716071 · Zbl 0426.65050 · doi:10.1137/0716071
[6] DOI: 10.1007/BF01442135 · Zbl 0377.65059 · doi:10.1007/BF01442135
[7] DOI: 10.1137/0713050 · Zbl 0337.65055 · doi:10.1137/0713050
[8] Glowinski, Numerical Analysis of Variadonal Inequalities (1981)
[9] DOI: 10.1016/0096-3003(90)90098-N · Zbl 0724.65121 · doi:10.1016/0096-3003(90)90098-N
[10] DOI: 10.1007/BF01408576 · Zbl 0617.65064 · doi:10.1007/BF01408576
[11] DOI: 10.1007/BF01396363 · Zbl 0668.65097 · doi:10.1007/BF01396363
[12] DOI: 10.1093/imamat/38.2.97 · Zbl 0632.65113 · doi:10.1093/imamat/38.2.97
[13] Copetti, Mat. Sci. & Technol. 6 pp 273– (1990) · doi:10.1179/mst.1990.6.3.273
[14] DOI: 10.1007/BF02600383 · Zbl 0615.65068 · doi:10.1007/BF02600383
[15] Elliott, Mathematical Models for Phase change Problems (1989)
[16] Ciarlet, The Finite Element Method for Elliptic Problems (1978)
[17] Bellettini, A Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 1 pp 317– (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.