×

zbMATH — the first resource for mathematics

The analytical solution of the Riemann problem in relativistic hydrodynamics. (English) Zbl 0806.76098
Summary: We consider the decay of an initial discontinuity in a polytropic gas in a Minkowski space-time (the special relativistic Riemann problem). In order to get a general analytical solution for this problem, we analyse the properties of the relativistic flow across shock waves and rarefactions. As in classical hydrodynamics, the solution of the Riemann problem is found by solving an implicit algebraic equation which gives the pressure in the intermediate states. The solution presented here contains as a particular case the special relativistic shock-tube problem in which the gas is initially at rest. Finally, we discuss the impact of this result on the development of high-resolution shock-capturing numerical codes to solve the equations of relativistic hydrodynamics.

MSC:
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
76L05 Shock waves and blast waves in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Marquina, Astron. Astrophys. 258 pp 566– (1992)
[2] Lichnerowicz, Phys. Scripta 2 pp 221– (1970)
[3] DOI: 10.1086/154942
[4] DOI: 10.1103/PhysRevB.3.858
[5] Israel, Proc. R. Soc. Lond. 259 pp 129– (1960)
[6] Godunov, Mat. Sb. 47 pp 271– (1959)
[7] DOI: 10.1146/annurev.fl.10.010178.001505
[8] DOI: 10.1103/PhysRev.74.328 · Zbl 0035.12103
[9] DOI: 10.1016/0021-9991(78)90023-2 · Zbl 0387.76063
[10] Smoller, Commun. Math. Phys. 105 pp 92– (1993)
[11] DOI: 10.1006/jcph.1993.1056 · Zbl 0779.76062
[12] DOI: 10.1017/S002211208800268X · Zbl 0657.76096
[13] DOI: 10.1103/PhysRevB.43.3794
[14] Font, Astron. Astrophys. 15 pp 2140– (1993)
[15] Eulderink, Astron. Astrophys. 15 pp 2140– (1993)
[16] DOI: 10.1063/1.1693846 · Zbl 0245.76099
[17] DOI: 10.1063/1.1693385 · Zbl 0227.76013
[18] DOI: 10.1086/190927
[19] Bogoyavlenski, Soviet Phys. JETP 46 pp 633– (1978)
[20] DOI: 10.1063/1.861619 · Zbl 0351.76134
[21] DOI: 10.1016/0021-9991(84)90142-6 · Zbl 0573.76057
[22] DOI: 10.1086/151927
[23] DOI: 10.1017/S0022112086001489 · Zbl 0609.76133
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.