×

zbMATH — the first resource for mathematics

Time representation: A taxonomy of temporal models. (English) Zbl 0806.68097
Summary: The objective of the paper is to provide a taxonomy of temporal systems according to three fundamental considerations: the assumed axiomatic theory, the expressiveness, and the mechanisms for inference which are provided. There is an discussion of the significance of the key features of the taxonomy for computer modelling of temporal events. A review considers the most significant representative systems with respect to these issues, including those due to Bruce, Allen and Hayes, Vilain, McDermott, Dechter, Meiri and Pearl, Kahn and Gorry, Kowalski and Sergot, Bacchus, Tenenberg and Koomen, and Knight and Ma. A tabular comparison of systems is given according to their main structural features. In conclusion, the characteristics of a general axiomatic system capable of representing all the features of these models is discussed.

MSC:
68T27 Logic in artificial intelligence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Allen, J. F. (1981). An Interval-Based Representation of Temporal Knowledge.Proc. 7th Int. Joint Conf. on AI, pp. 221-226.
[2] Allen, J. F. (1983). Maintaining Knowledge about Temporal Intervals.Communication of ACM 26: 123-154. · Zbl 0519.68079 · doi:10.1145/182.358434
[3] Allen, J. F. & Hayes P. J. (1989). Moments and Points in an Interval-based Temporal-based Logic.Comput. Intell. (Canada)5: 225-238. · doi:10.1111/j.1467-8640.1989.tb00329.x
[4] Bacchus F., Tenenberg J. & Koomen J. A. (1991). A Non-Reified Temporal Logic.Artificial Intelligence 52: 87-108. · Zbl 0762.03009 · doi:10.1016/0004-3702(91)90025-F
[5] Beek, P. V. (1992). Reasoning About Qualitative Temporal Information.Artificial Intelligence 58: 297-326. · Zbl 0782.68106 · doi:10.1016/0004-3702(92)90011-L
[6] Bernard, D., Borillo, M. & Gaume, B. (1991). From Event Calculus to the Scheduling Problem. Semantics of Action and Temporal Reasoning in Aircraft Maintenance.Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies 1: 195-221.
[7] Borillo, M. & Gaume, B. (1990). Spatiotemporal Reasoning Based on an Extension of Event Calculus. In Kohonen, T. & Fogelman-Soulie F. (eds.)Proceedings of the Third COGNITIVE Symposium, 337-344. Madrid, Spain.
[8] Bruce, B. C. (1972). A Model for Temporal References and Application in a Question Answering Program.Artificial Intelligence 3: 1-25. · doi:10.1016/0004-3702(72)90040-9
[9] Dechter, R., Meiri, I. & Pearl, J. (1991). Temporal Constrain Network.Artificial Intelligence 49: 61-95. · Zbl 0737.68070 · doi:10.1016/0004-3702(91)90006-6
[10] Funk, K. H. (1983). Theories, Models, And Human Machine Systems.Mathematical Modelling 4: 567-587. · Zbl 0572.90061 · doi:10.1016/0270-0255(83)90016-7
[11] Galton, A. (1990). A Critical Examination of Allen’s Theory of Action and Time.Artificial Intelligence 42: 159-188. · Zbl 0733.03017 · doi:10.1016/0004-3702(90)90053-3
[12] Galton, A. (1990).Logic for Information Technology. John Wiley & Sons Ltd. · Zbl 0724.03002
[13] Hayes, P. (1978). The Naive Physics Manifesto. In Michie D. (ed.)Expert Systems in the Microelectronic Age. Edinburgh.
[14] Kahn, K. M. & Gorry, A. G. (1977). Mechanizing Temporal Knowledge.Artificial Intelligence 9: 87-108. · doi:10.1016/0004-3702(77)90015-7
[15] Knight, B. & Ma, J. (1992). A General Temporal Model Supporting Duration Reasoning.AI Communication Journal 5: 75-84.
[16] Knight, B. & Ma, J. (1993). An Extended Temporal System Based on Points and Intervals.Information System 18: 111-120. · doi:10.1016/0306-4379(93)90008-O
[17] Kowalski, R. A. & Sergot, M. J. (1986). A Logic-Based Calculus of Events.New Generation Computing 4: 67-95. · Zbl 1356.68221 · doi:10.1007/BF03037383
[18] Kowalski, R. (1992). Database Updates In The Event Calculus.The Journal of Logic Programming, 121-146.
[19] Ma, J. & Knight, B. (in press). A General Temporal Theory.The Computer Journal.
[20] McCarthy, J. (1963). Situation, Actions, and Causal Laws, Memo 2, Stanford Artificial Intelligence Project.
[21] McCarthy, J. & Hayes, P. J. (1969). Some Philosophical Problems from the Standpoint of Artificial Intelligence. In Meltzer B. & Michie D. (eds),Machine Intelligence, 463-502. Edinburgh U.P. · Zbl 0226.68044
[22] McDermott, D. V. (1982). A Temporal Logic for Reasoning about Processes and Plans.Cog. Sci. 6: 101-155. · doi:10.1207/s15516709cog0602_1
[23] Sadri, F. (1987). Three Recent Approaches to Temporal Reasoning. In Galton, A. (ed.)Temporal Logic and their Applications, 121-168. Academic Press. · Zbl 0663.68103
[24] Shoham, Y. (1987a). Reified Temporal Logics: Semantical and Ontological Considerations. In Du Boulay, B., Hogg D. & Steels L. (eds.)Advances in Artificial Intelligence ? II, 183-190. North-Holland: Elsevier Science Publishers B.V.
[25] Shoham, Y. (1987b). Temporal Logics in AI: Semantical and Ontological Considerations.Artificial Intelligence 33: 89-104. · Zbl 0633.68014 · doi:10.1016/0004-3702(87)90052-X
[26] Suppes, P. (1961). A Comparison of the Meaning and Uses of Models in Mathematics and the Empirical Sciences. InThe Concept and Role of the Model in Mathematics and Natural and Social Sciences. D. Reidel Publ. Co. · Zbl 0147.24614
[27] Vilain, M. V. (1982). A System for Reasoning about Time.Proc. AAAI-82, 197-201. Pittsburgh, PA.
[28] Vilain, M. B. & Kautz, H. (1986). Constraint Propagation Algorithms for Temporal Reasoning.Pro. AAAI-86, 377-382.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.