zbMATH — the first resource for mathematics

Some general properties of stress-driven surface evolution in a heteroepitaxial thin film structure. (English) Zbl 0800.73369

74A60 Micromechanical theories
74M25 Micromechanics of solids
92E99 Chemistry
Full Text: DOI
[1] Asaro, R.J.; Tiller, W.A., Interface morphology development during stress corrosion cracking: part I. via surface diffusion, Metall. trans., 3, 1789-1796, (1972)
[2] Bean, J.C; Feldman, L.C.; Fiory, A.T.; Nakahara, S.; Robinson, I.K., Ge_xsi1−-x/si strained-layer superlattice grown by molecular beam epitaxy, J. vac. sci. technol., A2, 436-440, (1984)
[3] Bowie, O.L., Solutions of plane crack problems by mapping techniques, (), 1-55 · Zbl 0281.73061
[4] Cherepanov, G.P., Crack propagation in continuous media, Appl. math. mech., 27, 476-488, (1967) · Zbl 0288.73078
[5] Chiu, C.-H.; Gao, H., Stress singularities along a cycloid rough surface, Int. J. solids struct., 30, 2983-3012, (1993) · Zbl 0797.73004
[6] Chiu, C.-H.; Gao, H., Numerical simulation of diffusion controlled surface evolution, (), in press
[7] Eaglesham, D.J.; Cerullo, M., Dislocation-free stranski-krastanow growth of ge on si(100), Phys. rev. lett., 64, 1943-1946, (1990)
[8] Eshelby, J.D., The force on an elastic singularity, Phil. trans. R. soc., A244, 87-112, (1951) · Zbl 0043.44102
[9] Eshelby, J.D., The determination of the elastic field of an ellipsoidal inclusion, and related problems, (), 376-396 · Zbl 0079.39606
[10] Fitzgerald, E.A.; Watson, G.P.; Proano, R.E.; Ast, D.G.; Kirchner, P.D.; Pettit, G.D.; Woodall, J.M., Nucleation mechanisms and the elimination of misfit dislocations at mismatched interfaces by reduction in growth area, J. appl. phys., 65, 2220-2237, (1988)
[11] Frank, F.C.; Van der Merwe, J.H., One-dimensional dislocations II. misfitting monolayers and oriented overgrowth, (), 216-225 · Zbl 0033.04703
[12] Freund, L.B., The stability of a dislocation threading a strained layer on a substrate, J. appl. mech., 54, 553-557, (1987)
[13] Freund, L.B., Dislocation mechanisms of relaxation in strained epitaxial films, MRS bull., 17, 52-60, (1992)
[14] Freund, L.B.; Jonsdottir, F., Instability of a biaxially stressed thin film on a substrate due to material diffusion over its free surface, J. mech. phys. solids, 41, 1245-1264, (1993)
[15] Gao, H., Stress concentration at slightly undulating surfaces, J. mech. phys. solids, 39, 443-458, (1991) · Zbl 0734.73007
[16] Gao, H., A boundary perturbation analysis for elastic inclusions and interfaces, Int. J. solids struct., 28, 703-725, (1991) · Zbl 0755.73030
[17] Gao, H., Morphological instabilities along surfaces of anisotropic solids, (), 139-150
[18] Gao, H., The hypocycloid cavity: a path from a griffith slit crack to a cusped cycloid surface, (), in review
[19] Gillard, V.T.; Noble, D.B.; Nix, W.D., in situ study of isothermal strain relaxation in si-ge heteroepitaxial films using substrate curvature measurements, (), 395-400
[20] Griffith, A.A., The phenomena of rupture and flow in solids, Phil. trans. R. soc., A221, 163-197, (1921)
[21] Grilhe, J., Surface instabilities and dislocation formation at free surfaces of stressed solids, Europhys. lett., 23, 141-146, (1993)
[22] Grinfeld, M.A., Instability of the separation boundary between a non-hydrostatically stressed elastic body and a melt, Sov. phys. dokl., 31, 831-834, (1986)
[23] Grinfeld, M.A., The stress driven instabilities in crystals: mathematical models and physical manifestations, J. nonlinear sci., 3, 35-83, (1993) · Zbl 0843.73040
[24] Guha, S.; Madhukar, A.; Rajkumar, K.C., Onset of incoherency and defect introduction in the initial stages of molecular beam epitaxial growth of highly strained in_x,ga1−x As on gaas(l00), Appl. phys. lett., 57, 2110-2112, (1990)
[25] Irwin, G.R., Analysis of stresses and strains near the end of a crack traversing a plate, J. appl. mech., 24, 361-364, (1957)
[26] Jesson, D.E.; Pennycook, S.J.; Baribeau, J.-M.; Houghton, D.C., Direct imaging of surface cusps during a strained-layer expitaxy and implications for strain relaxation, Phys. rev. lett., 71, 1744-1747, (1993)
[27] Kamins, T.I.; Nauka, K.; Kruger, J.B.; Hoyt, J.L.; King, C.A.; Noble, D.B.; Gronet, C.M.; Gibbons, J.F., Small-geometry, high-performance, si-si_1xgex heterojunction bipolar transistors, IEEE elect. dev. lett., 10, 503-505, (1989)
[28] LeGoues, F.K.; Copel, M.; Tromp, R.M., Microstructure and strain relief of ge films grown layer by layer on si(OO1), Phys. rev. B, 42, 11,690-11,700, (1990)
[29] Li, J.; Chid, C.-H.; Gao, H., Dislocation nucleation from a surface cusp, (), in press
[30] Li, J.; Chiu, C.-H.; Gao, H.; Wu, T.W., Cusp-like flaws along a rough surface, Thin solid films, 236, 240-246, (1993)
[31] Matthews, J.W., The observation of dislocations to accommodate the misfit between crystals with different lattice parameters, Phil. mag., 6, 1347-1349, (1961)
[32] Matthews, J.W., Fracture and the formation of misfit dislocations between pbs and pbse, Phil. mag., 23, 1405-1416, (1971)
[33] Matthews, J.W., Coherent interfaces and misfit dislocations, (), Part B, Chapter 8
[34] Matthews, J.W.; Blakeslee, A.E., Defects in epitaxial multilayers I. misfit dislocations, J. cryst. growth, 27, 118-125, (1974)
[35] Mullins, W.W., Theory of thermal grooving, J. appl. phys., 28, 333-339, (1957)
[36] Mullins, W.W.; Sekerka, R.F., Stability of a planar interface during solidification of a dilute binary alloy, J. appl. phys., 35, 444-451, (1964)
[37] Nix, W.D., Mechanical properties of thin films, Metall. trans., 20A, 2217-2245, (1989)
[38] Nix, W.D.; Noble, D.B.; Turlo, J.F., Mechanisms and kinetics of misfit dislocation formation in heteroepitaxial thin films, (), 315-330
[39] ()
[40] Rice, J.R., A path-independent integral and the approximate analysis of strain concentration by notches and cracks, J. appl. mech., 35, 379-386, (1968)
[41] Rice, J.R., Dislocation nucleation from a crack tip: an analysis based on the peicrls concept, J. mech. phys. solids, 40, 239-271, (1992)
[42] Rice, J.R.; Thomson, R., Ductile versus brittle behavior of crystals, Phil. mag., 29, 73-97, (1974)
[43] Sadowsky, M.A.; Sternberg, E., Stress concentration around an ellipsoidal cavity in an infinite body under arbitrary plane stress perpendicular to the axis of revolution of cavity, J. appl. mech., 69, A191-A201, (1947) · Zbl 0029.17103
[44] Savin, G.N., Stress concentration around holes, (1961), Pergamon Press New York · Zbl 0124.18303
[45] Snyder, C.W.; Barlett, D.; Orr, B.G.; Bhattacharya, P.K.; Singh, J., The molecular beam epitaxy growth of ingaas on gaas(loo) studied by in situ scanning tunneling microscopy and reflection high-energy electron diffraction, J. vac. sci. technol., 89, 2189-2193, (1991)
[46] Snyder, C.W.; Orr, B.G.; Kessler, D.; Sander, L.M., Effects of strain on surface morphology in highly strained ingaas films, Phys. rev. lett., 66, 3032-3035, (1991)
[47] Spencer, B.J.; Meiron, D.I., Nonlinear evolution of the stress-driven morphological instability in a two-dimensional semi-infinite solid, Acta metall., (1994), Submitted to
[48] Spencer, B.J.; Voorhees, P.W.; Davis, S.H., Morphological instability in epitaxially strained dislocation-free solid films, Phys. rev. lett., 67, 3696-3699, (1991)
[49] Srolovitz, D.J., On the stability of surfaces of stressed solids, Acta metall., 37, 621-625, (1989)
[50] Tsao, J.Y., Materials fundamentals of molecular beam epitaxy, (1993), Academic Press Boston
[51] Van der Merwe, J.H., Crystal interfaces. part I. semi-infinite crystals, J. appl. phys., 34, 117-122, (1963) · Zbl 0109.23101
[52] Van der Merwe, J.H., The role of lattice misfit in epitaxy, (), 129-151
[53] Venables, J.A.; Spiller, G.D.T.; Hanbuecken, M., Nucleation and growth of thin films, Rep. prog. phys., 47, 399-459, (1984)
[54] Yang, W.H.; Srolovitz, D.J., Crack-like surface instabilities in stressed solids, Phys. rev. lett., 71, 1593-1596, (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.