×

zbMATH — the first resource for mathematics

The KL-ONE family. (English) Zbl 0800.68874

MSC:
68T30 Knowledge representation
68T35 Theory of languages and software systems (knowledge-based systems, expert systems, etc.) for artificial intelligence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Woods, W.A., What’s in a link? foundations for semantic networks, (), 35-82, Reprinted in
[2] Brachman, R.J., A structural paradigm for representing knowledge, (), also
[3] Woods, W.A.; Brachman, R.J., Research in natural language understanding, ()
[4] Brachman, R.J.; Schmolze, J.G., An overview of the KL-ONE knowledge representation system, Cognitive science, 9, 2, 171-216, (April-June, 1985)
[5] Mark, W., Representation and inference in the consul system, (), Vancouver, BC
[6] Mark, W., Natural-language help in the consul system, (), 475-479
[7] Mark, W., Use of database organization in the consul system, ()
[8] Wilczynski, D., Knowledge acquisition in the consul system, ()
[9] Neches, R.; Swartout, W.R.; Moore, J.D., Enhanced maintenance and explanation of expert systems through explicit models of their development, IEEE transactions on software engineering, SE-11, 1337-1351, (November, 1985)
[10] Swartout, W.R.; Smoliar, S.W., On making expert systems more like experts, Expert systems, 4, 3, 196-207, (August, 1987)
[11] Bateman, J.; Kasper, R.; Schütz, J.; Steiner, E., A new view of the process of translation, ()
[12] Kasper, R., An experimental parser for systemic grammars, (), Budapes, Hungary
[13] Kasper, R., Unification and classification: an experimental in information-based parsing, (), Pittsburgh, PA
[14] Arens, Y.; Miller, L.; Shapiro, S.C.; Sondheimer, N.K., Automatic construction of user-interface displays, (), 808-813, St. Paul, Minn.
[15] Schmolze, J.G.; Brachman, R.J., (), Fairchild technical report no. 618, (May, 1982), Also appears as
[16] MacGregor, R., The evolving technology of classification-based knowledge representation systems, ()
[17] Brachman, R.J., What IS-A is and isn’t: an analysis of toxonomic links in semantic networks, IEEE computer, 16, 10, 30-36, (October, 1983)
[18] Fahlman, NETL: A system for representing and using real-world knowledge, (1979), The M.I.T. Press · Zbl 0444.68083
[19] Woods, W.A., Don’t blame the tool, Computational intelligence, 3, 3, 228-237, (August, 1987)
[20] Woods, W.A., Important issues in knowledge representation, Proceedings of the IEEE, 74, 10, (October, 1986)
[21] Woods, W.A., Parallel algorithms for real time knowledge based systems, () · Zbl 0368.68081
[22] Woods, W.A., The JARGON language, (), Cambridge, MA · Zbl 0368.68081
[23] Brachman, R.J.; Bobrow, R.J.; Cohen, P.R.; Klovstad, J.W.; Webber, B.L.; Woods, W.A.; Brachman, R.J.; Bobrow, R.J.; Cohen, P.R.; Klovstad, J.W.; Webber, B.L.; Woods, W.A., Research in natural language understanding, (), (Sept. 1, 1978-Aug. 31, 1979)
[24] Lipkis, T.; Mark, W., The consul classifier, (), Consul Note 5
[25] Lipkis, T.A., A KL-ONE classifier, (), 128-145
[26] Schmolze, J.G.; Lipkis, T.A., Classification in the KL-ONE knowledge representation system, (), Karlsruhe, West Germany
[27] Brachman, R.J., I lied about the trees, The AI magazine, VI, 3, 80-93, (Fall, 1985)
[28] Woods, W.A., Understanding subsumption and taxonomy: A framework for progress, ()
[29] Brachman, R.J., On the epistemological status of semantic networks, (), 3-50
[30] Newell, A., The knowledge level, Artificial intelligence, 18, 1, 87-127, (1982)
[31] Greenfeld, N.R.; Yonke, M.D., AIPS: an information presentation system for decision makers, Bbnrep 4228, bbn, (December, 1979)
[32] Yonke, M.D.; Greenfeld, N.R.; Yonke, M.D.; Greenfeld, N.R.; Yonke, M.D.; Greenfeld, N.R., AIPS: an information presentation system for decision makers, (), V. 12, 48-56, (1980), A revised version of this paper is also available as
[33] Zdybel, F.; Greenfeld, N.R.; Yonke, M.D.; Gibbons, J., An information presentation system, (), 978-984, Vancouver, B.C.
[34] Bates, M.; Stallard, D.; Moser, M., The IRUS transportable natural language database interface, ()
[35] Woods, W.A., Transition network grammars for natural language analysis, (), 13, 10, 591-606, (October 1970), Reprinted in
[36] Woods, W.A., Natural language communication with machines: an ongoing goal, (), 195-209
[37] Yen, J., A principled approach to reasoning about the specificity of rules, ()
[38] Yen, J.; Neches, R.; MacGregor, R., Using terminological models to enhance the rule-based paradigm, (), Monterrey, Mexico
[39] Yen, J., Reasoning about specificity of patterns in term subsumption-based systems, ()
[40] Brachman, R.J.; Levesque, H.J., Assertions in KL-one, (), 8-17
[41] Brachman, R.J.; Fikes, R.E.; Levesque, H.J., KRYPTON: integrating terminology and assertion, (), 31-35, Washington, D.C.
[42] Jang, Y.; Patil, R., KOLA: A knowledge organization language, ()
[43] Jang, Y., KOLA: knowledge organization language, ()
[44] available as Technical Report CMU-CS-88-182, Department of Computer Science, Carnegie Mellon University.
[45] Schmolze, J.G., Terminological knowledge representation systems supporting N-ary terms, ()
[46] Finin, T.; Fritzson, R.; McEntire, R.; McKay, D.; O’Hare, A., The intellegent system server: delivering AI to complex systems, ()
[47] Finin, T.; Fritzson, R., How to serve knowledge—notes on the design of a knowledge base server, ()
[48] McKay, D.; Finin, T.; O’Hare, A., The intelligent database interface: integrating AI and database systems, ()
[49] Decio, E.; Petrin, P.; Spaminaato, L., Pushing the terminological barrier, ()
[50] Bergmann, H.; Gerlach, M., QUIRK—implementierung einer tbox zur repraesentation begrifflichen wissens, (), (in German)
[51] Poesio, M., The QUARK reference manual, ()
[52] Koubarakis, M.; Mylopoulos, J.; Stanley, M.; Borgida, A., Telos: features and formalization, ()
[53] Trost, H.; Pfahringer, B., VIE-KL: an experiment in hybrid knowledge representation, ()
[54] von Luck, K.; Nebel, B.; Peltason, C.; Schmiedel, A., The anatomy of the BACK system, ()
[55] Nebel, B.; von Luck, K., Hybrid reasoning in BACK, (), 260-269
[56] Nebel, B.; von Luck, K., Issues of integration and balancing in hybrid knowledge representation systems, (), 114-123
[57] Peltason, C.; Schmiedel, A.; Kindermann, C.; Quantz, J., The BACK system revisited, ()
[58] Beck, H.W.; Gala, S.K.; Navathe, S.B., Classification as a query processing inchnique in the CANDIDE semantic data model, ()
[59] Borgida, A.; Brachman, R.J.; McGuinness, D.L.; Resnick, L.A., CLASSIC: A structural data model for objects, ()
[60] Brachman, R.J.; McGuinness, D.L.; Patel-Schneider, P.F.; Resnick, L.A.; Borgida, A., Living with CLASSIC: when and how to use a KL-ONE-like language, () · Zbl 0939.68837
[61] Guarino, N., DRL: terminologic and relational knowledge in prolog, ()
[62] Guarino, N., Representing domain structure of many-sorted prolog knowledge bases, () · Zbl 0645.68101
[63] Guarino, N., Attributes and extensional equivalence in DRL, (), 1988
[64] Guarino, N., Nature and structure of terminological knowledge: the DRL approach, ()
[65] Patel-Schneider, P.F., Small can be beautiful in knowledge representation, (), AI technical report no. 37, 559-565, (October, 1984), Extended version available as A
[66] Cappelli, A.; Moretti, L.; Vinchesi, C., KL-CONC: A language for interacting with SI-nets, ()
[67] Cappelli, A.; Moretti, L., An approach to natural language in the SI-nets paradigm, ()
[68] Cappelli, A.; Caracoglia, G.; Moretti, L., A chunking mechanism for a knowledge representation system, Cybernetics and systems, 17, 4, 277-287, (1986)
[69] Adorni, G.; Cappelli, A.; Gaglio, S.; Moretti, L., Integrating logic programming and structural knowledge representation, Journal for the integrated study of artificial intelligence, cognitive science and applied epistemology, 4, 1, (1987)
[70] Fikes, R.R.; Henderson, A., On supporting the use of procedures in office work, ()
[71] Fikes, R.R., Highlights from klonetalk, (), 8-17
[72] Vilain, M., KL-TWO, A hybrid knowledge representation system, ()
[73] Vilain, M., The restricted language architecture of a hybrid representation system, (), 547-551
[74] Freeman, M.W.; Leitner, H.H., KNET extensions, Journal of computational linguistics, (July-September, 1981)
[75] Freeman, M.W.; Hirschman, L.; McKay, D.P.; Palmer, M.S., KNET: A logic-based associative network system, ()
[76] Freeman, M.; Hirschman, L.; McKay, D.; Palmer, M., KNET: A logic-based associative network framework for expert systems, (1983), Research and Development Division, SDC—A Burroughs Company, Technical report
[77] Abrett, G.; Burstein, M.H., The KREME knowledge editing environment, International journal of man-machine studies, 27, 2, 103-126, (1987)
[78] Mays, E.; Apte, C.; Griesmer, J.; Kastner, J., Experience with K-rep: an object-centered knowledge representation language, ()
[79] Also available as Fairchild Technical Report No. 639 or as FLAIR Technical Report No. 16.
[80] Brachman, R.J.; Gilbert, V.P.; Levesque, H.J., An essential hybrid reasoning system: knowledge and symbol level accounts of KRYPTON, (), 532-539
[81] Pletat, U.; Luck, V., Knowledge representation in LILOG, () · Zbl 0747.68076
[82] MacGregor, R.M., A deductive pattern matcher, (), 403-408
[83] MacGregor, R.; Yen, J., The knowledge representation project at ISI, Technical report tech. report RR-87-199, USC/ISI, (1987)
[84] Bittencourt, G., A unified formalism for knowledge representation, (), 111-121
[85] Bittencourt, G., A hybrid system architecture and its semantics, ()
[86] Edelmann, J.; Owsnicki, B., Data models in knowledge representation systems: A case study, (), 69-74
[87] Owsnicki-Klewe, B., Configuration as a consistency maintenance task, (), 77-87
[88] Moser, M.G., An overview of NIKL, the new implementation of KL-ONE, (), 7-26
[89] Robins, G., (), (draft)
[90] Kaczmarek, T.S.; Bates, R.; Robins, G., Recent developments in NIKL, (), 978-987
[91] Schmolze, J.G.; Mark, W.S., The NIKL experience, Computational intelligence, 6, 1, (1991)
[92] Kobsa, A., Utilizing knowledge: the components of the SB-ONE knowledge representation workbench, ()
[93] Allgayer, J.; Reddig, C., What KL-ONE lookalikes need to cope with natural language—scope and aspect of plural noun phrases, () · Zbl 0747.68085
[94] Han, S., A frame and Horn clause-based hybrid knowledge representation, ()
[95] Han, S.; Shin, D.W.; Kim, Y.; Jun, Y.P.; Maeng, S.R.; Cho, J.W., A logic programming approach to hybrid knowledge representation, (), 93-127
[96] Han, S.; Cho, J.W., Sphinx—a hybrid knowledge representation system, (), 1211-1220
[97] Patel-Schneider, P.F.; Patel-Schneider, P.F., Decidable, logic-based knowledge representation, (), AI technical report no. 56, (May 1987), Also available as
[98] Brachman, R.J.; Levesque, H.J., The tractibility of subsumption in frame-based description languages, (), 34-37, (AAAI-84)
[99] Nebel, B., On terminological cycles, () · Zbl 0943.68182
[100] Nebel, B., Terminological cycles: semantics and computational properties, ()
[101] Brachman, R.J.; Levesque, H., Competence in knowledge representation, ()
[102] Doyle, J.; Patil, R.S., Language restrictions, taxonomic classifications and the utility of representation services, ()
[103] Schmidt-Schauβ, M.; Smolka, G.; Schmidt-Schauβ, M.; Smolka, G., Attributive concept descriptions with complements, (), 48, 1, (February 1991), also available as
[104] Rich, C., Knowledge representation languages and the predicate calculus: how to have your cake and eat it too, (), 193-196
[105] Rich, C., The layered architecture of a system for reasoning about programs, (), 540-546
[106] Feldman, Y.A.; Rich, C., Bread, frappe and cake: the Gourmet’s guide to automated deduction, ()
[107] Hayes, P.J., The logic of frames, (), 46-61
[108] Shapiro, S.C.; Rapaport, W.J., Sneps considered as a fully intensional propositional semantic network, ()
[109] Schubert, L.K., Extending the expressive power of semantic networks, Artificial intelligence, 7, 2, 163-198, (Summer, 1976)
[110] Schubert, L.K.; Goebel, R.G.; Cercone, N.J., The structure and organization of a semantic net for comprehension and inference, (), 121-175
[111] Levesque, H.J., A formal treatment of incomplete knowledge bases, ()
[112] Levesque, H.J., The interaction with incomplete knowledge bases: A formal treatment, ()
[113] Brachman, R.J.; Levesque, H.J., Expressiveness and tractability in knowledge representation and reasoning, Computational intelligence, 3, 2, 78-93, (1987)
[114] Stickel, S.E., Automated deduction by theory resolution, (), 1181-1186, An expanded version is available as
[115] Nebel, B., Computational complexity of terminological reasoning in BACK, Artificial intelligence, 34, 3, 371-383, (April, 1988)
[116] Patel-Schmeider, P.F.; Levesque, H.J.; Brachman, R.J., ARGON: knowledge representation meets information retrieval, ()
[117] Patel-Schneider, P.F.; Patel-Schneider, P.F., A decidable first-order logic for knowledge representation, (), 455-458, Also available as · Zbl 0675.03015
[118] Etherington, D.W., On inheritance hierarchies with exceptions, (), 104-108
[119] McAllester, D.A., An outlook on truth maintenance, ()
[120] McAllester, D.A., Reasoning utility package User’s manual, ()
[121] MacGregor, R., Loom users manual, ()
[122] Laird, J.E.; Newell, A.; Rosenbloom, P.S., SOAR: an architecture for general intelligence, Artificial intelligence, 33, 1, (September 1987)
[123] Peltason, C., The scheme of posidonius—using taxonomic reasoning in design, (), 299-314
[124] Codd, E.F., Data models in database management, Proceedings of workshop on data abstraction, databases and conceptual modelling, ACM SIGMOD, 11, 2, 112-114, (1981)
[125] Attardi, G.; Simi, M., Consistency and completeness of OMEGA, a logic for knowledge representation, (), 504-510
[126] Attardi, G.; Simi, M., A description oriented logic for building knowledge bases, Proceedings of the IEEE, 74, 10, (October 1986)
[127] Rich, C.; Waters, R.C., Automatic programming: myths and prospects, IEEE computer, 21, 8, 40-51, (August 1988)
[128] Rich, C.; Waters, R.C., The Programmer’s apprentice: A research overview, IEEE computer, 21, 11, 11-25, (November 1988)
[129] McAllester, D.; Givan, R.; Fatima, T., Taxonomic syntax for first order inference, (), 289-300
[130] Aït-Kaci, H., A lattice theoretic approach to computation based on a calculus of partially ordered type structures, ()
[131] Aït-Kaci, H.; Nasr, R., LOGIN: A logic programming language with built in inheritance, Journal of logic programming, 3, 3, 185-215, (1986) · Zbl 0599.68013
[132] Smolka, G.; Aït-Kaci, H., Inheritance hierarchies: semantics and unification, Journal of symbolic computation, 7, 3/4, 343-370, (1989) · Zbl 0678.68009
[133] Patel-Schneider, P.F., Undecidability of subsumption in NIKL, Artificial intelligence, 39, 2, (June 1989)
[134] Schmidt-Schnuβ, M., Subsumption in KL-ONE is undecidable, (), 421-431
[135] Smolka, G.; Smolka, G., Feature constraint logics for unification grammars, (), (to appear) · Zbl 0754.68108
[136] Nebel, B.; Smolka, G.; Nebel, B.; Smolka, G., Representation and reasoning with attributive descriptions, (), Also available as · Zbl 0747.68075
[137] Donini, F.; Hollunder, B.; Lenzerini, M.; Spaccamela, A.M.; Nardi, D.; Nutt, W., The frontier of tractability for concept description languages, ()
[138] Hollunder, B., Subsumption algorithms for some attributivconcept description languages, ()
[139] Smolka, G., A feature logic with subsorts, ()
[140] Nebel, B., Terminological reasoning is inherently intractable, (), 43, 2, (May 1990), Also available as
[141] Patel-Schneider, P.F., A four-valued semantics for terminological logics, Artificial intelligence, 38, 3, 319-351, (April, 1989)
[142] Haimowitz, I.J.; Smoliar, S.W.; Swartout, W.R., Using NIKL in a large medical knowledge base, (), A report from the frontiers of knowledge representation, (October, 1988), Draft paper
[143] Doyle, J.; Patil, R.S., Two theses of knowledge representation: language restrictions, taxonomic classifications and the utility of representation serives, Artificial intelligence, 48, 3, 261-297, (April, 1991)
[144] Haas, A.R., A syntactic theory of belief and action, Artificial intelligence, 28, 3, 245-292, (May, 1986)
[145] Allen, J.F.; Perrault, C.R., Analyzing intention in utterances, (), 15, 3, 143-178, (1980), Reprinted in
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.