×

zbMATH — the first resource for mathematics

Turbulence amplification by a shock wave and rapid distortion theory. (English) Zbl 0799.76029
Amplification of turbulent kinetic energy in an axial compression is examined in the frame of homogeneous rapid distortion theory by using the Craya-Herring formalism. The results of the theory are first compared to results of direct numerical simulations on homogeneous axial compression. The applicability of this homogeneous approach to the shock wave turbulence interaction is then discussed.

MSC:
76F05 Isotropic turbulence; homogeneous turbulence
76L05 Shock waves and blast waves in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Délery J., AGARDograph 280 (1980)
[2] Dussauge J. P., AGARDograph-AG- 315 (1989)
[3] DOI: 10.1017/S0022112088002800 · doi:10.1017/S0022112088002800
[4] DOI: 10.1007/BF00187225 · doi:10.1007/BF00187225
[5] DOI: 10.1063/1.858443 · doi:10.1063/1.858443
[6] DOI: 10.1063/1.857960 · Zbl 0745.76034 · doi:10.1063/1.857960
[7] DOI: 10.1017/S0022112090002075 · Zbl 0692.76054 · doi:10.1017/S0022112090002075
[8] DOI: 10.1063/1.857331 · Zbl 0691.76057 · doi:10.1063/1.857331
[9] DOI: 10.2514/3.9642 · doi:10.2514/3.9642
[10] DOI: 10.2514/3.9155 · doi:10.2514/3.9155
[11] Sabel’nikov V. A., Fluid Mech. Sov. Res. 4 pp 46– (1975)
[12] DOI: 10.1017/S0022112078002682 · Zbl 0401.76018 · doi:10.1017/S0022112078002682
[13] DOI: 10.1017/S0022112092002404 · Zbl 0825.76343 · doi:10.1017/S0022112092002404
[14] Debiéve J. F., Indian J. Technol. 20 pp 90– (1982)
[15] DOI: 10.1063/1.1694822 · Zbl 0366.76045 · doi:10.1063/1.1694822
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.