×

zbMATH — the first resource for mathematics

A characterization of positive quadrature formulae. (English) Zbl 0799.65020
It is shown that quasi-orthogonal polynomials that lead to positive quadrature formulae can all be expressed as characteristic polynomials of a symmetric tridiagonal matrix with positive subdiagonal elements. Numerical results are not given.

MSC:
65D32 Numerical quadrature and cubature formulas
41A55 Approximate quadratures
33C65 Appell, Horn and Lauricella functions
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach Science Publishers, New York-London-Paris, 1978. Mathematics and its Applications, Vol. 13. · Zbl 0389.33008
[2] Erik A. van Doorn, Representations and bounds for zeros of orthogonal polynomials and eigenvalues of sign-symmetric tri-diagonal matrices, J. Approx. Theory 51 (1987), no. 3, 254 – 266. · Zbl 0636.42023 · doi:10.1016/0021-9045(87)90038-4 · doi.org
[3] G. Freud, Orthogonal polynomials, Pergamon Press, Oxford, 1971. · Zbl 0226.33014
[4] Walter Gautschi, Advances in Chebyshev quadrature, Numerical analysis (Proc. 6th Biennial Dundee Conf., Univ. Dundee, Dundee, 1975) Springer, Berlin, 1976, pp. 100 – 121. Lecture Notes in Math., Vol. 506.
[5] J. Gilewicz and E. Leopold, On the sharpness of results in the theory of location of zeros of polynomials defined by three-term recurrence relations, Orthogonal polynomials and applications (Bar-le-Duc, 1984) Lecture Notes in Math., vol. 1171, Springer, Berlin, 1985, pp. 259 – 266. · Zbl 0599.30012 · doi:10.1007/BFb0076552 · doi.org
[6] C. A. Micchelli and T. J. Rivlin, Numerical integration rules near Gaussian quadrature, Israel J. Math. 16 (1973), 287 – 299. · Zbl 0287.65014 · doi:10.1007/BF02756708 · doi.org
[7] Franz Peherstorfer, Characterization of positive quadrature formulas, SIAM J. Math. Anal. 12 (1981), no. 6, 935 – 942. · Zbl 0481.41025 · doi:10.1137/0512079 · doi.org
[8] Franz Peherstorfer, Characterization of quadrature formula. II, SIAM J. Math. Anal. 15 (1984), no. 5, 1021 – 1030. · Zbl 0596.41044 · doi:10.1137/0515079 · doi.org
[9] H. J. Schmid, A note on positive quadrature rules, Rocky Mountain J. Math. 19 (1989), no. 1, 395 – 404. Constructive Function Theory — 86 Conference (Edmonton, AB, 1986). · Zbl 0691.41032 · doi:10.1216/RMJ-1989-19-1-395 · doi.org
[10] G. Szegő, Orthogonal polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, RI, 1975. · JFM 65.0278.03
[11] Yuan Xu, Weight functions for Chebyshev quadrature, Math. Comp. 53 (1989), no. 187, 297 – 302. · Zbl 0684.41022
[12] Yuan Xu, Quasi-orthogonal polynomials, quadrature, and interpolation, J. Math. Anal. Appl. 182 (1994), no. 3, 779 – 799. · Zbl 0802.42020 · doi:10.1006/jmaa.1994.1121 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.