×

zbMATH — the first resource for mathematics

A discrete analogue of a theorem of Makarov. (English) Zbl 0799.60062
Let \(S(j)\) be a simple random walk in \({\mathbb{Z}}^ 2\), \(A\) be a finite subset of \({\mathbb{Z}}^ 2\), and \(H_ A(\cdot)\) be the hitting measure of the walk (from infinity). It is proved that \[ H_ A\{x: n^{-1}e^{- (\text{ln } n)^ \alpha}\leq H_ A(x)\leq n^{-1}e^{(\text{ln } n)^ \alpha}\}\geq 1-k(\text{ln } n)^ \beta \] for any \(\alpha\in ({1\over 2},1)\), \(\beta\in (0,{1\over 2})\) and any connected \(A\) of radius \(n\), where the constant \(k\) does not depend on \(A\) and \(n\).

MSC:
60G50 Sums of independent random variables; random walks
31A15 Potentials and capacity, harmonic measure, extremal length and related notions in two dimensions
60J65 Brownian motion
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/BF01044226 · Zbl 0714.60057 · doi:10.1007/BF01044226
[2] DOI: 10.1007/BF01197892 · Zbl 0685.60080 · doi:10.1007/BF01197892
[3] Auer, Limit Theorems in Probability and Statistics pp 9– (1990)
[4] Ahlfors, Conformal Invariance. Topics in Geometric Function Theory (1973)
[5] Spitzer, Principles of Random Walk (1976) · Zbl 0359.60003 · doi:10.1007/978-1-4684-6257-9
[6] DOI: 10.1112/plms/s3-51.2.369 · Zbl 0573.30029 · doi:10.1112/plms/s3-51.2.369
[7] Carleson, Ann. Acad. Sci. Fenn. 10 pp 113– (1985) · Zbl 0593.31004 · doi:10.5186/aasfm.1985.1014
[8] DOI: 10.1007/BF00532688 · Zbl 0307.60045 · doi:10.1007/BF00532688
[9] DOI: 10.1016/0304-4149(87)90196-7 · Zbl 0626.60067 · doi:10.1016/0304-4149(87)90196-7
[10] Kesten, Random Walks, Brownian Motion and Interacting Particle Systems pp 309– (1991) · doi:10.1007/978-1-4612-0459-6_17
[11] DOI: 10.1007/BF02392296 · Zbl 0667.30020 · doi:10.1007/BF02392296
[12] DOI: 10.1103/PhysRevLett.61.2514 · doi:10.1103/PhysRevLett.61.2514
[13] DOI: 10.1007/BF00280445 · Zbl 0406.28009 · doi:10.1007/BF00280445
[14] Lawler, Intersections of Random Walks (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.