# zbMATH — the first resource for mathematics

Travelling fronts in cylinders. (English) Zbl 0799.35073
The authors are concerned with travelling wave solutions in an infinite cylinder $$\Sigma:= \mathbb{R}\times \omega$$ with $$\omega\subseteq \mathbb{R}^{n- 1}$$ a bounded domain. They consider equations of the form $$\Delta u- \beta(y,c) \partial_{x_ 1} u+ f(u)=0$$ in $$\Sigma$$ $$(x=(x_ 1,y))$$ under homogeneous Neumann boundary conditions on $$\partial\Sigma$$ and asymptotic conditions $$u(-\infty, \cdot)=0$$ and $$u(+\infty, \cdot)=1$$. As far as $$\beta$$ is concerned, they assume: $$\beta$$ continuous on $$\omega\times \mathbb{R}$$ and strictly increasing in its second argument, $$\beta(y,c)\to \pm\infty$$ as $$c\to \pm\infty$$ uniformly for $$y\in\omega$$. One may think of $$f$$ as being in $$C^ 2([ 0,1])$$ with $$f(0)= 0= f(1)$$ and $$f'(1)< 0$$.
Three cases are considered: (A) $$f>0$$ on $$(0,1)$$; (B) $$\exists\theta>0: f|_{[0,\theta]}\equiv 0$$ and $$f|_{(\theta,1)} > 0$$; (C) $$\exists\theta>0: f|_{(0,\theta)} < 0$$ and $$f|_{(\theta,1)} > 0$$. In case (A) they show that there exists a $$c^*\in\mathbb{R}$$ such that the above problem is solvable, iff $$c\geq c^*$$. If $$f'(0)>0$$, then the solution is unique modulo translations. For case (B) they obtain a solution $$(c,u)$$, whereas $$\omega$$ convex has to be additionally required in case (C) for that purpose.
There are many more significant results in this comprehensive investigation, which extends various classical results from combustion theory as well as the celebrated paper of Kolmogorov, Petrovsky and Piskounov to higher dimensions.
Reviewer: G.Hetzer (Auburn)

##### MSC:
 35J65 Nonlinear boundary value problems for linear elliptic equations 35K99 Parabolic equations and parabolic systems 80A25 Combustion
##### Keywords:
travelling wave solutions; infinite cylinder
Full Text:
##### References:
 [1] Agmon, S.; Nirenberg, L., Properties of solutions of ordinary differential equations in Banach space, Comm. Pure Appl. Math., Vol. 16, 121-239, (1963) · Zbl 0117.10001 [2] Aronson, D. G.; Weinberger, H. F., Nonlinear diffusion in population genetics, combustion and nerve propagation, (Goldstein, J. A., Partial Differential Equations and Related Topics, (1975), Springer-Verlag New York), 5-49, Lecture Notes in Math., No. 446 · Zbl 0325.35050 [3] Aronson, D. G.; Weinberger, H. F., Multidimensional nonlinear diffusions arising in population genetics, Adv. in Math., Vol. 30, 33-58, (1978) · Zbl 0407.92014 [4] H. Berestycki, L. A. Caffarelli and L. Nirenberg, Uniform Estimates for Regularization of Free Boundary Problems, Analysis and Partial Differential Equations, C. Sadosky M. Decker Ed., 1990, pp. 567-617. · Zbl 0702.35252 [5] Berestycki, H.; Larrouturou, B., A semilinear elliptic equation in a strip arising in a two-dimensional flame propagation model, J. Reine Angewandte Math., Vol. 396, 14-40, (1989) · Zbl 0658.35036 [6] H. Berestycki and B. Larrouturou, Mathematical Aspects of Planar Flame Propagation, Longman Press (in preparation). · Zbl 0755.35090 [7] Berestycki, H.; Larrouturou, B.; Lions, P.-L., Multidimensional traveling-wave solutions of a flame propagation model, Arch. Rational Mech. Anal., Vol. III, 33-49, (1990) · Zbl 0711.35066 [8] Berestycki, H.; Larrouturou, B.; Roquejoffre, J. M., Stability of travelling fronts in a curved flame model, part I. linear analysis, Arch. Rational. Mech. Anal., Vol. 117, 97-117, (1991) [9] Berestycki, H.; Nicolaenko, B.; Scheurer, B., Travelling wave solutions to combustion models and their singular limits, S.I.A.M. J. Math. Anal., Vol. 16, 6, 1207-1242, (1985) · Zbl 0596.76096 [10] Berestycki, H.; Nirenberg, L., (Rabinowitz, P. H.; Zehnder, E., Some Qualitative Properties of Solutions of Semilinear Elliptic Equations in Cylindrical Domains, in Analysis, etc., (1990), Academic Press New York), 115-164, (volume dedicated to J. Moser) · Zbl 0705.35004 [11] Berestycki, H.; Nirenberg, L., Travelling front solutions of semilinear equations in higher dimensions, frontiers in pure and appl. math., (Dautray, R., (1991), North-Holland), 31-41 · Zbl 0780.35054 [12] Berestycki, H.; Nirenberg, L., On the method of moving planes and the sliding method, Bol. da Soc. Brasileira de Matematica, Vol. 22, 1-37, (1991) · Zbl 0784.35025 [13] Berestycki, H.; Nirenberg, L., Asymptotic behaviour via the Harnack inequality, nonlinear analysis, (Ambrosetti, A.; etal., A tribute in Honour of Giovanni Prodi, (1991), Sc. Normale Sup Pisa), 135-144 · Zbl 0840.35011 [14] Casten, R. G.; Holland, C. J., Instability results for reaction-diffusion equations with Neumann boundary conditions, J. Diff. Eq., Vol. 27, 266-273, (1978) · Zbl 0338.35055 [15] Fife, P. C., Mathematical aspects of reacting and diffusing systems, Lect. Notes Biomath., (1979), Springer-Verlag New York, No. 28 · Zbl 0403.92004 [16] Fife, P. C.; McLeod, J. B., The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Rat. Mech. Anal., Vol. 65, 335-361, (1977) · Zbl 0361.35035 [17] Freidlin, M., Limit theorems for large deviations and reaction-diffusion equations, Ann. Prob., Vol. 13, 639-675, (1985) · Zbl 0576.60070 [18] M. Freidlin, KPP in cylinders (to appear). [19] Gardner, R., Existence of multidimensional traveling wave solutions of an initial-boundary value problem, J. Diff. Eq., Vol. 61, 335-379, (1986) · Zbl 0549.35066 [20] S. Heinze, Traveling Waves for Semilinear Parabolic Partial Differential Equations in Cylindrical Domains, preprint. · Zbl 0699.35137 [21] Johnson, W. E.; Nachbar, W., Laminar flame theory and the steady linear burning of a monopropellant, Arch. Rat. Mech. Anal., Vol. 12, 58-91, (1963) · Zbl 0111.40502 [22] Kanel’, Ja. I., Stabilization of solution of the Cauchy problem for equations encountered in combustion theory, Mat. Sbornik, Vol. 59, 245-288, (1962) [23] Kanel’, Ja. I., On steady state solutions to systems of equations arising in combustion theory, Dokl. Akad. Nauk U.S.S.R., Vol. 149, 367-369, (1963) [24] A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bulletin Université d’État à Moscow (Bjul. Moskowskogo Gos. Univ.), Série internationale, section A. 1, 1937, pp. 1-26, English translation: Study of the Diffusion Equation with Growth of the Quantity of Matter and its Application to a Biology Problem. In Dynamics of curved fronts, R. Pelcé Ed., Perspectives in Physics Series, Academic Press, New York, 1988, pp. 105-130. [25] Lax, P. D., A phragmén-Lindelöf theorem in harmonic analysis and its applications to some questions in the theory of elliptic equations, Comm. Pure Appl. Math., Vol. 10, 361-389, (1957) · Zbl 0077.31501 [26] Matano, H., Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. R.I.M.S., Kyoto University, Vol. 15, 401-454, (1979) · Zbl 0445.35063 [27] McKean, H., An application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piscounov, Comm. Pure Appl. Math., Vol. 28, 323-331, (1975), Vol. 29, 1976, pp. 553-554 · Zbl 0316.35053 [28] O. Oleinik (to appear). [29] Pazy, A., Asymptotic expansions of solutions of ordinary differential equations in Hilbert space, Arch. Rational. Mech. Anal., Vol. 24, 193-218, (1967) · Zbl 0147.12303 [30] J. M. Roquejoffre, Stability of Travelling Fronts in a Curved Flame Model. Part II: Non-Linear Orbital Stability, Arch. Rational. Mech. Anal. (to appear). [31] J. M. Roquejoffre, Convergence to Travelling Waves for Solutions of a Class of Semilinear Parabolic Equations (to appear). · Zbl 0806.35093 [32] J. M. Vega, The Asymptotic Behavior of the Solutions of Some Semilinear Elliptic Equations in Cylindrical Domains, J. Diff. Eqs. (submitted). · Zbl 0803.35058 [33] J. M. Vega, Travelling Wavefronts of Reaction-Diffusion Equations in Cylindrical Domains, Comm. P.D.E. (submitted). · Zbl 0816.35058 [34] A. I. Vol’pert, On the Propagation of Waves Described by Nonlinear Parabolic Equations (Comments on paper No. 6 by Kolmogorov, Petrowsky and Piskunov) in I. G. Petrovsky’s Collected Works in Differential Equations and Probability Theory, Akad. Nauk Moscow 1988, V. I. Arnold et al. Ed., pp. 333-358. [35] A. I. Vol’tert, Wave Solutions of Parabolic Equations, Inst. Chemical Physics, Acad. Sci. (Chernogolovka), 1983, Russian preprint. [36] Volpert, A. I.; Volpert, V. A., Applications of the rotation theory of vector fields to the study of wave solutions of parabolic equations, Trud. Moscow Math. Soc., Vol. 52, 59-108, (1989), English. Translation: Trans. Moscow Math. Soc., Vol. 52, 1990 [37] A. I. Volpert and V. A. Volpert, Existence and Stability of Traveling Waves in Chemical Kinetics. Dynamics of Chemical and Biological Systems, Novosibirsk Nauka, 1989, pp. 56-131 (in Russian). · Zbl 0890.34019 [38] A. I. Volpert and V. A. Volpert, Traveling Waves in Monotone Parabolic Systems, Preprint. Branch of the Inst. of Chemical Physics, Chernogolovka, 1990, 49 p. (in Russian). · Zbl 0898.34049 [39] J. B. Zeldovich and D. A. Frank-Kamenetskii, A Theory of Thermal Propagation of Flame, Acta Physiochimica U.R.S.S., Vol. 9, 1938. English Translation: In Dynamics of Curved Fronts, R. Pelcé Ed., Perspectives in Physics Series, Academic Press, New York, 1988, pp. 131-140.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.