zbMATH — the first resource for mathematics

Dynamics of HIV infection of CD4\(^ +\) T cells. (English) Zbl 0796.92016
The paper examines a model for the interaction of HIV with \(\text{CD4}^ +\) T cells that considers four populations: uninfected T cells, latently infected T cells, actively infected T cells, and free virus. The proposed dynamical model for T-cell depletion due to HIV infection: (a) does not account for the immune response to HIV infection or mechanisms of cell death other than direct HIV-mediating killing, (b) proves that HIV by itself can cause partial \(\text{CD4}^ +\) T-cell depletion in the face of normal T-cell replenishment, and (c) demonstrates that the loss of T cells can take place on a time scale of years, as it is characteristic of the disease process in most HIV-infected individuals.
The model exhibits two steady states, an uninfected state in which no virus is present, and an endemically infected state, in which virus and infected T cells are present. The dynamic behaviour of these steady states is examined by differential equations and numerical analysis techniques.
Reviewer: S.Curteanu (Iaşi)

92C60 Medical epidemiology
92C50 Medical applications (general)
Full Text: DOI
[1] Abo, T.; Kawate, T.; Itoh, K.; Kumagai, K., Studies on the bioperiodicity of the immune response. I. Circadian rhythms of human T, B, and K cell traffic in the peripheral blood, J. immunol., 126, 1360-1363, (1981)
[2] Albert, J.; Abrahamsson, B.; Nagy, K.; Aurelius, E.; Gaines, H.; Nyström, G.; Fenyö, E.M., Rapid development of isolate-specific neutralizing antibodies and consequent emergence of virus variants which resist neutralization by autologous sera, Aids, 4, 107-112, (1990)
[3] Anderson, R.M., Mathematical and statistical studies of the epidemiology of HIV, Aids, 3, 333-346, (1989)
[4] Anderson, R.M.; May, R.M., Complex dynamical behavior in the interaction between HIV and the immune system, (), 335-349
[5] Åsjö, B.; Morfeldt-Måanson, L.; Albert, J.; Biberfeld, G.; Karlsson, A.; Lidman, K.; Fenyö, E.M., Replicative capacity of human immunodeficiency virus from patients with varying severity of infection, Lancet, ii, 660-662, (1986)
[6] Cheng-Mayer, C.; Seto, D.; Tateno, M.; Levy, J.A., Biologic features of HIV-1 that correlate with virulence in the host, Science, 240, 80-82, (1988)
[7] Cooper, L.N., Theory of an immune system retrovirus, Proc. natl. acad. sci. U.S.A., 83, 9159-9163, (1986)
[8] De Boer, R.J., GRIND: great integrator of differential equations, (1983), Bioinformatics Group, Univ. Utrecht The Netherlands
[9] Doedel, E.J., AUTO: a program for the bifurcation analysis of autonomous systems, Cong. num., 30, 265-285, (1981)
[10] Dolez̆al, J.; Hraba, T., Application of the mathematical model of immunological tolerance to HIV infection, Folio biol. (praha), 34, 336-341, (1988)
[11] Edelman, A.S.; Zolla-Pazner, S., AIDS: a syndrome of immune dysregulation, dysfunction, and deficiency, Faseb j., 3, 22-30, (1989)
[12] Eisen, H.N., Immunology, (1980), Harper and Row Hagerstown, Md
[13] Fauci, A.S., Current issues in developing a strategy for dealing with the acquired immunodeficiency syndrome, Proc. natl. acad. sci. U.S.A., 83, 9278-9283, (1986)
[14] Fauci, A.S., The human immunodeficiency virus: infectivity and mechanisms of pathogenesis, Science, 239, 617-622, (1988)
[15] Fenyö, E.M.; Morfeldt-Måanson, L.; Chiodi, F.; Lind, B.; v Grerfelt, A.; Albert, J.; Olausson, E.; Åsjö, B., Distinct replicative and cytopathic characteristics of human immunodeficiency virus isolates, J. virol., 62, 4414-4419, (1988)
[16] Fletcher, J.E.; Shrager, R.I.; Bailey, J.J., A kinetic model of T-lymphocyte interactions with HIV, (1988), Preprint
[17] Folks, T.; Kelly, J.; Benn, S.; Kinter, A.; Justement, J.; Gold, J.; Redfield, R.; Sell, K.W.; Fauci, A.S., Susceptibility of normal human lymphocytes to infection with HTLV-III/LAV, J. immunol., 136, 4049-4053, (1986)
[18] Freitas, A.A.; Rocha, B.; Coutinho, A.A., Lymphocyte population kinetics in the mouse, Immunol. rev., 91, 5-37, (1986)
[19] Gelderblom, H.R.; Hausmann, E.H.S.; Özel, M.; Pauli, G.; Koch, M.A., Fine structure of human immunodeficiency virus (HIV) and immunolocalization of structural proteins, Virology, 156, 171-176, (1987)
[20] Goedert, J.J.; Biggar, R.J.; Melbye, M.; Mann, D.L.; Wilson, S.; Gail, M.H.; Grossman, R.J.; DiGioia, R.A.; Sanchez, W.C.; Weiss, S.H.; Blattner, W.A., Effect of T4 count and cofactors on the incidence of AIDS in homosexual men infected with human immunodeficiency virus, Jama, 257, 331-334, (1987)
[21] Gowda, S.D.; Stein, B.S.; Mohagheghpour, N.; Benike, C.J.; Engleman, E.G., Evidence that T cell activation is required for HIV-1 entry in CD4^{+} lymphocytes, J. immunol., 142, 773-780, (1989)
[22] Gray, D., T cell and B cell memory are short lived in the absence of antigen, J. cell. biochem., (1989), Suppl. 13A: C010
[23] Gray, D.; Leanderson, T., Expansion, selection and maintenance of memory B cell clones, Curr. topics microbiol. immunol., 159, 1-17, (1990)
[24] Harper, M.E.; Marselle, L.M.; Gallo, R.C.; Wong-Stall, F., Detection of lymphocytes expressing human T-lymphotropic virus type III in lymph nodes and peripheral blood from infected individuals by in situ hybridization, Proc. natl. acad. sci. U.S.A., 83, 772-776, (1986)
[25] Hethcote, H.W.; Yorke, J.A., Gonerrhea transmission dynamics and control, ()
[26] Ho, D.D.; Pomerantz, R.J.; Kaplan, J.C., Pathogenesis of infection with human immunodeficiency virus, N. engl. J. med., 317, 278, (1987)
[27] Hoxie, J.A.; Alpers, J.D.; Rackowski, J.L.; Huebner, K.; Haggarty, B.S.; Cedarbaum, A.J.; Reed, J.C., Alterations in T4 (CD4) protein and mrna synthesis in cells infected with HIV, Science, 234, 1123-1127, (1986)
[28] Hraba, T.; Dolez̆al, J., Mathematical model of CD4^{+} lymphocyte depletion in HIV infection, Folio biol. (praha), 35, 156-163, (1989)
[29] Hraba, T.; Dolez̆al, J.; C̆elikovsky, S., Model-based analysis of CD4^{+} lymphocyte dynamics in HIV infected individuals, Immunibology, 181, 108-118, (1990)
[30] Intrator, N.; Deocampo, G.P.; Cooper, L.N., Analysis of immune system retrovirus equations, (), 85-100, Part 2
[31] Kiernan, R.; Marshall, J.; Bowers, R.; Doherty, R.; McPhee, D., Kinetics of HIV-1 replication and intracellular accumulation of particles in HTLV-1 transformed cells, AIDS res. hum. retrovirus, 6, 743-752, (1990)
[32] Lajmanovich, A.; Yorke, J.A., A deterministic model for gonorrhea in a nonhomogeneous population, Math. biosci., 28, 221-236, (1976) · Zbl 0344.92016
[33] Lane, H.C.; Fauci, A.S., Immunologic abnormalities in the acquired immunodeficiency syndrome, Ann. rev. immunol., 3, 477-500, (1985)
[34] Lane, H.C.; Fauci, A.S., Infectious complications of AIDS, (), 185-203
[35] Larder, B.A.; Darby, G.; Richman, D.D., HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy, Science, 243, 1731-1734, (1989)
[36] Layne, S.P.; Spouge, J.L.; Dembo, M., Quantifying the infectivity of HIV, Proc. natl. acad. sci. U.S.A., 86, 4644-4648, (1989)
[37] Leonard, R.; Zagury, D.; Desportes, I.; Bernard, J.; Zagury, J.-F.; Gallo, R.C., Cytopathic effect of human immunodeficiency virus in T4 cells is linked to the last stage of virus infection, Proc. natl. acad. sci. U.S.A., 85, 3570-3574, (1988)
[38] McLean, A., HIV infection from an ecological viewpoint, (), 77-84, Part 2
[39] McLean, A.R.; Kirkwood, T.B.L., A model of human immunodeficiency virus infection in T helper cell clones, J. theor. biol., 147, 177-203, (1990)
[40] Malone, J.L.; Simms, T.E.; Gray, G.C.; Wagner, K.F.; Burge, J.R.; Burke, D.S., Sources of variability in repeated T-helper lymphocyte counts from human immunodeficiency virus type 1-infected patients: total lymphocyte count fluctuations and diurnal cycle are important, J. aids, 3, 144-151, (1990)
[41] Margolick, J.B.; Volkman, D.J.; Folks, T.M.; Fauci, A.S., Amplification of HTLV-III/LAV infection by antigen-induced activation of T cells and direct suppression by virus of lymphocyte blastogenic responses, J. immunol., 138, 1719-1723, (1987)
[42] Merrill, S., AIDS: background and the dynamics of the decline of immunocompetence, (), 59-75, Part 2
[43] Merrill, S., Modeling the interaction of HIV with cells of the immune response, (), 371-385, (Lect. Notes Biomath., Vol. 83)
[44] Murray, J.D., Mathematical biology, (1989), Springer-Verlag New York · Zbl 0682.92001
[45] Nara, P.L.; Smit, L.; Dunlop, N.; Hatch, W.; Merges, M.; Waters, D.; Kelliher, J.; Gallo, R.C.; Fischinger, P.J.; Goudsmit, J., Emergence of viruses resistant to neutralization by V3-specific antibodies in experimental human immunodeficiency virus type 1 IIIB infection of chimpanzees, J. virol., 64, 3779-3791, (1990)
[46] Nelson, G.W.; Perelson, A.S., A mechanism of immune escape by slow-replicating HIV strains, J. aids, 5, 82-93, (1992)
[47] Nowak, M.A.; May, R.M., Mathematical biology of HIV infections: antigenic variation and diversity threshold, Math. biosci., 106, 1-21, (1991) · Zbl 0738.92008
[48] Nowak, M.A.; May, R.M.; Anderson, R.M., The evolutionary dynamics of HIV-1 quasispecies and the development of immunodeficiency disease, Aids, 4, 1095-1103, (1990)
[49] Perelson, A.S., Modeling the interaction of the immune system with HIV, (), 350-370, (Lect. Notes Biomath. Vol. 83)
[50] Phillips, A.; Lee, C.A.; Elford, J.; Janossy, G.; Bofill, M.; Timms, A.; Kernoff, P.B.A., Prediction of progression to AIDS by analysis of CD4 lymphocyte counts in a haemophilic cohort, Aids, 3, 737-741, (1989)
[51] Psallidopoulos, M.C.; Schnittman, S.M.; Thompson, L.M.; Baseler, M.; Fauci, A.S.; Lane, H.C.; Salzman, N.P., Integrated proviral human immunodeficiency virus type 1 is present in CD4^{+} peripheral blood lymphocytes in healthy seropositive individuals, J. virol., 63, 4626-4631, (1989)
[52] Purcell, E.M., Life at low Reynolds number, Am. J. phys., 45, 3-11, (1977)
[53] Redfield, R.R.; Wright, D.C.; Tramont, E.C., The Walter Reed staging classification for HTLV-III/LAV infection, N. engl. J. med., 314, 131-132, (1986)
[54] Reibnegger, G.; Fuchs, D.; Hausen, A.; Werner, E.R.; Dierich, M.P.; Wachter, H., Theoretical implications of cellular immune reactions against helper lymphocytes infected by an immune system retrovirus, Proc. natl. acad. sci. U.S.A., 84, 7270-7274, (1987)
[55] Schnittman, S.M.; Psallidopoulos, M.C.; Lane, H.C.; Thompson, L.; Baseler, M.; Massari, F.; Fox, C.H.; Salzman, N.P.; Fauci, A.S., The reservoir for HIV-1 in human peripheral blood is a T cell that maintains expression of CD4, Science, 245, 305-308, (1989)
[56] Schnittman, S.M.; Greenhouse, J.J.; Psallidopoulos, M.C.; Baseler, M.; Salzman, N.P.; Fauci, A.S., Increasing viral burden in CD4^{+} T cells from patients with human immunodeficiency virus (HIV) infection reflects rapidly progressive immunosuppression and clinical disease, Ann. int. med., 113, 438-443, (1990)
[57] Somasundaran, M.; Robinson, H.L., Unexpectedly high levels of HIV-1 RNA and protein synthesis in a cytocidal infection, Science, 242, 1554-1557, (1988)
[58] Taylor, J.M.G.; Fahey, J.L.; Detels, R.; Giorgi, J.V., CD4 percentage, CD4 number and CD4:CD8 ratio in HIV infection: which to choose and how to use, J. aids, 2, 114-124, (1989)
[59] Tersmette, M.; Gruters, R.A.; de Wolf, F.; de Goede, R.E.Y.; Lange, J.M.A.; Schellekens, P.T.A.; Goudsmit, J.; Huisman, H.G.; Miedema, F., Evidence for a role of virulent human immunodeficiency virus (HIV) variants in the pathogenesis of acquired immunodeficiency syndrome: studies on sequential HIV isolates, J. virol., 63, 2118-2125, (1989)
[60] Tindall, G.; Cooper, D.A., Primary HIV infection, Aids, 5, 1-14, (1991)
[61] Weiss, L., The cells and tissues of the immune system, (1972), Prentice-Hall Englewood Cliffs, N.J
[62] Wiggins, S., Introduction to applied nonlinear dynamic systems and chaos, (1990), Springer-Verlag New York
[63] Willems, J.L., Stability theory of dynamical systems, (1970), Wiley New York · Zbl 0222.93010
[64] Wu, L.; Scollay, R.; Egerton, M.; Pearse, M.; Spangrude, G.J.; Shortman, K., CD4 expressed on earliest T-lineage precursor cells in adult murine thymus, Nature, 349, 71-74, (1991)
[65] Zack, J.A.; Arrigo, S.J.; Weitsman, S.R.; Go, A.S.; Haislip, A.; Chen, I.S.Y., HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure, Cell, 61, 213-222, (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.