×

zbMATH — the first resource for mathematics

A variational boundary integral method for the analysis of 3-D cracks of arbitrary geometry modelled as continuous distributions of dislocation loops. (English) Zbl 0796.73067

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
74P10 Optimization of other properties in solid mechanics
74R99 Fracture and damage
74A60 Micromechanical theories
74M25 Micromechanics of solids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bui, J. Mech. Phys. Solids 25 pp 29– (1977)
[2] Rizzo, Int. j. numer. methods eng. 11 pp 1753– (1977)
[3] and , ’A variational approach to the prediction of the three-dimensional geometry hydraulic fractures’, SPE/DOE Paper No. 9879, Low Permeability Symposium, Denver, Colorado. May 1981.
[4] Murakami, Eng. Fracture Mech. 17 pp 193– (1983)
[5] Sladek, Int. J. Solids Struct. 19 pp 425– (1983)
[6] ’Three-dimensional fracture-propagation Models’, in (ed.), Hydraulic Fracturing, SPE Monograph, 1989.
[7] The Boundary Element Method for Engineers, Pentech Press, London, 1978.
[8] Boundary Element Analysis in Computational Fracture Mechanics, Kluwer, Dordrecht, 1988. · Zbl 0648.73039
[9] and , Numerical Fracture Mechanics, Kluwer, Dordrecht, 1991.
[10] and , Theory of Dislocations, 2nd edn, Wiley-Interscience, New York, 1982.
[11] Maier, Comput. Methods Appl. Mech. Eng. 60 pp 175– (1987)
[12] Weaver, Int. J. Solids Struct. 13 pp 321– (1977)
[13] Dynamic Fracture Mechanics, Cambridge University Press, Cambridge, 1990. · Zbl 0712.73072
[14] and , ’On the problem of crack extension in brittle solids under general loading’, in (ed.), Mechanics Today, Pergamon, New York, 1978. · Zbl 0379.73096
[15] Cotterell, Int. J. Fracture 16 pp 155– (1980)
[16] He, J. Appl. Mech. 56 pp 270– (1989)
[17] Gao, J. Appl. Mech. 56 pp 828– (1989)
[18] Fares, J. Appl. Mech. 56 pp 837– (1989)
[19] Bower, J. Mech. Phys. Solids 38 pp 443– (1990)
[20] Bower, J. Mech. Phys. Solids 39 pp 815– (1991)
[21] The Finite Element Method, Prentice-Hall, Englewood Cliffs, N.J, 1987.
[22] and , Boundary Element Methods in Engineering Science, McGraw-Hill, New York, 1981. · Zbl 0499.73070
[23] ’Weight function theory for three-dimensional elastic crack analysis’, in: and (eds.), Fracture Mechanics: Perspectives and Directions, ASTM STP 1020, 1989.
[24] Barsoum, Int. j. numer. methods eng. 11 pp 85– (1977)
[25] Akin, Int. j. numer. methods eng. 10 pp 1249– (1976)
[26] Sloan, Adv. Eng. Software 9 pp 34– (1987)
[27] Sih, Int. J. Fracture 10 pp 305– (1974)
[28] Suresh, J. Am. Cer. Soc. 73 pp 1257– (1990)
[29] Ortiz, Int. J. Fracture 42 pp 117– (1990)
[30] Horii, J. Mech. Phys. Solids 31 pp 155– (1983)
[31] Kassir, J. Appl. Mech. 33 pp 602– (1966)
[32] Tensor Analysis and Continuum Mechanics, Springer, New York, 1972. · Zbl 0224.73001
[33] Tensor Analysis-Theory and Applications, Wiley, New York, 1951.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.