zbMATH — the first resource for mathematics

Self-avoiding walks. (English) Zbl 0795.60065
Self-avoiding walks are discrete paths without self-intersections, and play an important role in polymer science and statistical mechanics. This introductory review paper discusses the basic properties of self-avoiding walks on the integer lattice \(\mathbb{Z}^ d\), with emphasis on the asymptotic behaviour of the number of \(n\)-step self-avoiding walks and of the mean-square displacement. The critical exponents governing this asymptotic behaviour are described. Monte Carlo methods for analyzing self-avoiding walks are discussed. Lattice trees, lattice animals and percolation are briefly mentioned.
Reviewer: G.Slade (Hamilton)

60G50 Sums of independent random variables; random walks
82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
82D60 Statistical mechanical studies of polymers
Full Text: DOI
[1] S. E. Alm, Upper bounds for the connective constant of self-avoiding walks, to appear inCombinatorics, Probability and Computing 2 (1993). · Zbl 0793.60082
[2] D. Arnaudon, D. Iagolnitzer, and J. Magnen, Weakly self-avoiding polymers in four dimensions. Rigorous results,Phys. Lett. B 273 (1991), 268–272. · doi:10.1016/0370-2693(91)91682-L
[3] D. Brydges, S. N. Evans, and J. Z. Imbrie, Self-avoiding walk on a hierarchical lattice in four dimensions,Ann. Probab. 20 (1992), 82–124. · Zbl 0742.60067 · doi:10.1214/aop/1176989919
[4] D. C. Brydges and T. Spencer, Self-avoiding walk in 5 or more dimensions,Commun. Math. Phys. 97 (1985), 125–148. · Zbl 0575.60099 · doi:10.1007/BF01206182
[5] A. R. Conway, I. G. Enting, and A. J. Guttmann, Algebraic techniques for enumerating self-avoiding walks on the square lattice,J. Phys. A: Math. Gen. 26 (1993), 1519–1534. · Zbl 0772.60094 · doi:10.1088/0305-4470/26/7/012
[6] A. R. Conway and A. J. Guttmann, Lower bound on the connective constant for square lattice self-avoiding walks,J. Phys. A: Math. Gen. 26 (1993), 3719–3724. · Zbl 0793.60120 · doi:10.1088/0305-4470/26/15/021
[7] G. Grimmett,Percolation, Springer-Verlag, Berlin, 1989.
[8] A. J. Guttmann, private communication.
[9] A. J. Guttmann, On the zero-field susceptibility in the d = 4, n = 0 limit: analysing for confluent logarithmic singularities,J. Phys. A: Math. Gen. 11 (1978), L103-L106. · doi:10.1088/0305-4470/11/5/003
[10] A. J. Guttmann, Correction to scaling exponents and critical properties of then-vector model with dimensionality > 4,J. Phys. A: Math. Gen. 14 (1981), 233–239. · doi:10.1088/0305-4470/14/1/023
[11] A. J. Guttmann and I. G. Enting, The size and number of rings on the square lattice,J. Phys. A: Math. Gen. 21 (1988), L165-L172. · doi:10.1088/0305-4470/21/3/009
[12] A. J. Guttmann and J. Wang, The extension of self-avoiding random walk series in two dimensions,J. Phys. A: Math. Gen. 24 (1991), 3107–3109. · doi:10.1088/0305-4470/24/13/024
[13] J. M. Hammersley and K. W. Morton, Poor man’s Monte Carlo,J. Roy. Stat. Soc. B 16 (1954), 23–38.
[14] J. M. Hammersley and D. J. A. Welsh, Further results on the rate of convergence to the connective constant of the hypercubical lattice,Quart. J. Math. Oxford (2)13 (1962), 108–110. · Zbl 0123.00304 · doi:10.1093/qmath/13.1.108
[15] T. Hara and G. Slade, The lace expansion for self-avoiding walk in five or more dimensions,Rev. Math. Phys. 4 (1992), 235–327. · Zbl 0755.60054 · doi:10.1142/S0129055X9200008X
[16] T. Hara and G. Slade, Self-avoiding walk in five or more dimensions. I. The critical behaviour,Commun. Math. Phys. 147 (1992), 101–136. · Zbl 0755.60053 · doi:10.1007/BF02099530
[17] T Hara, G. Slade, and A. D. Sokal, New lower bounds on the self-avoiding-walk connective constant,J. Stat. Phys. 1993, 479–517. · Zbl 1100.82513
[18] D. Iagolnitzer and J. Magnen, Polymers in a weak random potential in dimension four: rigorous renormalization group analysis, to appear inComm. Math. Phys. · Zbl 0823.60059
[19] H. Kesten, On the number of self-avoiding walks,J. Math. Phys. 4 (1963), 960–969. · Zbl 0122.36502 · doi:10.1063/1.1704022
[20] H. Kesten, On the number of self-avoiding walks. II.J. Math. Phys. 5 (1964), 1128–1137. · Zbl 0161.37402 · doi:10.1063/1.1704216
[21] G. E Lawler,Intersections of Random Walks, Birkhäuser, Boston, 1991. · Zbl 1228.60004
[22] J. C. Le Guillou and J. Zinn-Justin, Accurate critical exponents from field theory,J. Phys. France 50 (1989), 1365–1370. · doi:10.1051/jphys:0198900500120136500
[23] N. Madras and G. Slade,The Self-Avoiding Walk, Birkhäuser, Boston, 1993. · Zbl 0780.60103
[24] N. Madras and A. D. Sokal, Nonergodicity of local, length-conserving Monte Carlo algorithms for the self-avoiding walk,J. Stat. Phys. 47 (1987), 573–595. · doi:10.1007/BF01007527
[25] N. Madras and A. D. Sokal, The pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk,J. Stat. Phys. 50 (1988), 109–186. · Zbl 1084.82503 · doi:10.1007/BF01022990
[26] B. Nienhuis, Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas,J. Stat. Phys. 34 (1984), 731–761. · Zbl 0595.76071 · doi:10.1007/BF01009437
[27] G. L. O’Brien, Monotonicity of the number of self-avoiding walks,J. Stat. Phys. 59 (1990), 969–979. · Zbl 0718.60080 · doi:10.1007/BF01025858
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.