×

zbMATH — the first resource for mathematics

Modal logic with names. (English) Zbl 0793.03012
The paper aims at some general theory of names in a purely modal environment. Names are properties that identify a single intensional object completely. The suggested language is a propositional modal language enriched by a general modality and names: special propositional variables that are allowed to be true at exactly one point of the universe only. This language turns out to be of great expressive power. Topics of the paper are (modal) definability and deductive systems in that language. Some completeness theorems are proved.

MSC:
03B45 Modal logic (including the logic of norms)
PDF BibTeX Cite
Full Text: DOI
References:
[1] van Benthem, J. F. A. K. (1979), Canonical modal logics and ultrafilter extensions.JSL 44(1), 1-8. · Zbl 0405.03011
[2] van Benthem, J. F. A. K. (1984), Correspondence theory. In:Handbook of Philosophical Logic, D. Gabbay and F. Guenthner (eds.), 167-247, vol. II, Reidel, Dordrecht. · Zbl 0875.03048
[3] van Benthem, J. F. A. K. (1986),Modal Logic and Classical Logic, Bibliopolis, Napoli. · Zbl 0624.03022
[4] Blackburn, P. (1989), Nominal tense logic. Dissertation, Centre for Cognitive Science, University of Edinburgh, 1989.
[5] Bull, R. (1970), An approach to tense logic.Theoria 36(3), 282-300. · Zbl 0227.02012
[6] Burgess, J. (1982), Axioms for tense logic I: ?Since? and ?Until?,Notre Dame Journal of Formal Logic 23(2), 367-374. · Zbl 0494.03013
[7] Chagrova, L. (1989), Undecidable problems connected with first-order definability of intuitionistic formulae,Proceedings of Kalinin State University, p. 42. · Zbl 0722.03011
[8] Fine, K. (1975), Some connections between the elementary and modal logic. In:Proceedings of the Third Scandinavian Logic Symposium, Uppsala 1973, S. Kanger (ed.), North-Holland, Amsterdam, 15-31.
[9] Gabbay, D. (1981), An irreflexivity lemma with applications to axiomatizations of conditions on tense frames. In:Aspects of Philosophical Logic, U. Monnich (ed.). · Zbl 0519.03008
[10] Gabbay, D. & I. Hodkinson (1990), An axiomatization of the temporal logic with Since and Until over the real numbers.Journal of Logic and Computation, Vol. 1. · Zbl 0744.03018
[11] Gargov, G., S. Passy & T. Tinchev (1987), Modal environment for Boolean speculations. In:Mathematical Logic and Its Applications (ed. D. Skordev), 253-263, Plenum Press, New York. · Zbl 0701.03008
[12] Gargov, G. &. S. Passy (1988), Determinism and looping in Combinatory PDL.Theoretical Computer Science,61, 259-277. · Zbl 0709.68581
[13] Gargov, G. & S. Passy (1990), A note on Boolean modal logic. In:Mathematical Logic, Proceedings of the Summer School and Conference HEYTING’88, P. Petkov (ed.), Plenum Press, New York and London. · Zbl 0777.03005
[14] Goldblatt, R. I. (1976), Metamathematics of modal logic.Reports on Math. Logic 6, 41-77 and 7, 21-52. · Zbl 0356.02016
[15] Goldblatt, R. I. (1982),Axiomatizing the Logic of Computer Programming, Springer LNCS130. · Zbl 0474.68045
[16] Goldblatt, R. I. & S. K. Thomason (1974), Axiomatic classes in prepositional modal logic. In: J. Crossley (ed.),Algebra and Logic, 163-173, Springer LNM450, Berlin.
[17] Goranko, V. (1990), Modal definability in enriched languages.Notre Dame Journal of Formal Logic 31(1), 81-105. · Zbl 0706.03016
[18] Goranko, V. & S. Passy (1990), Using the universal modality: gains and questions,Journal of Logic and Computation 2(1), 5-30. · Zbl 0774.03003
[19] Hughes, G. E. & M. J. Cresswell (1984),A Companion to Modal Logic, Methuen, London. · Zbl 0625.03005
[20] Koymans, R. (1989), Specifying Message Passing and Time-Critical Systems with Temporal Logic. Dissertation, Eindhoven. · Zbl 0666.03023
[21] Makinson, D. (1971), Some embedding theorems for modal logic.Notre Dame Journal of Formal Logic,12, 252-254. · Zbl 0211.01203
[22] Passy, S. & T. Tinchev (1991), An Essay in Combinatory Dynamic Logic.Information and Computation 93(2), 263-332. · Zbl 0732.03021
[23] Prior, A. (1956), Modality and quantification in S5.Journal of Symbolic Logic 21(1), 60-62. · Zbl 0071.01002
[24] de Rijke, M. (1989), The modal theory of inequality,Journal of Symbolic Logic 57(2), 566-584. · Zbl 0788.03019
[25] Sahlqvist, H. (1975), Completeness and correspondence in first and second order semantics for modal logic. In:Proceedings of the Third Scandinavian Logic Symposium, Uppsala 1973, S. Kanger (ed.), North-Holland, Amsterdam. · Zbl 0319.02018
[26] Segerberg, K. (1971),An Essay in Classical Modal Logic, Filosofiska Studier13, Uppsala. · Zbl 0311.02028
[27] Venema, Y. (1991), Personal correspondence.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.