×

zbMATH — the first resource for mathematics

Linear and non-linear iterative methods for the incompressible Navier- Stokes equations. (English) Zbl 0791.76061
Summary: The discretized finite volume form of the two-dimensional, incompressible Navier-Stokes equations is solved using both a frozen coefficient and a full Newton nonlinear iteration. The optimal method is a combination of these two techniques. The linearized equations are solved using a conjugate-gradient-like method. Various types of preconditioning are developed. Completely general sparse matrix methods are used. Investigations are carried out to determine the effect of finite volume cell anisotropy on the preconditioner. Numerical results are given for several problems.

MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D05 Navier-Stokes equations for incompressible viscous fluids
65F10 Iterative numerical methods for linear systems
Software:
CGS; symrcm
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, DC, 1980. · Zbl 0521.76003
[2] Howard, Int. J. Numer. Methods Fluids 10 pp 925– (1990)
[3] Chin, Int. J. Numer. Methods Fluids 15 pp 273– (1992)
[4] Gartling, Int. J. Numer. Methods Fluids 11 pp 953– (1990)
[5] Braaten, Numer. Heat Transfer B 15 pp 1– (1989)
[6] and , ’Application of AF-preconditioned conjugate gradient-like methods to the computation of unsteady incompressible viscous flow’, Proc. Int. Conf. Numerical Methods in Laminar and Turbulent Flow, Pineridge, Swansea, 1991, pp. 1537-1547.
[7] Robichaud, Int. J. Numer. Methods Eng. 24 pp 447– (1987)
[8] Jordan, Comput. Fluids 21 pp 503– (1992)
[9] Hunt, Int. J. Numer. Methods Fluids 11 pp 247– (1990)
[10] Carey, Int. J. Numer. Methods Fluids 9 pp 127– (1989)
[11] Vanka, Int. J. Heat Mass Transfer 28 pp 2093– (1985)
[12] Duff, BIT 29 pp 635– (1989)
[13] Dahl, Int. J. Numer. Methods Fluids 15 pp 525– (1992)
[14] Galpin, Int. J. Numer. Methods Fluids 6 pp 409– (1986)
[15] MacArthur, Int. J. Numer. Methods Fluids 9 pp 325– (1989)
[16] Vanka, J. Comput. Phys. 65 pp 138– (1986)
[17] ’A multigrid method for steady incompressible Navier-Stokes equations based on vector-flux splitting’, in (ed.), Multigrid Methods, SIAM, Philadelphia, PA, 1987.
[18] ’An algebraic multigrid scheme for solving the Navier-Stokes equations on unstructured meshes’, Proc. Int. Conf. on Numerical Methods in Laminar and Turbulent Flow, Pineridge, Swansea, 1991, pp. 1432-1442.
[19] and , ’Application of a multigrid method to a bouyancy-induced flow problem’, in (ed.), Multigrid Methods, SIAM, Philadelphia, PA, 1987.
[20] Sonneveld, SIAM J. Sci. Stat. Comput. 10 pp 36– (1989)
[21] van der Vorst, SIAM J. Sci. Stat. Comput. 13 pp 631– (1992)
[22] Buffat, Int. J. Numer. Methods Fluids 12 pp 683– (1991)
[23] Dutto, Int. J. Numer. Methods Eng. 36 pp 457– (1993)
[24] D’Azevedo, SIAM J. Matrix Anal. Appl. 13 pp 944– (1992)
[25] D’Azevedo, BIT 32 pp 442– (1992)
[26] Einset, Int. J. Numer. Methods Fluids 14 pp 817– (1992)
[27] Zedan, Numer. Heat Transfer 8 pp 537– (1985)
[28] Chin, J. Comput. Appl. Math. 46 pp 415– (1993)
[29] Solution of Linear Systems of Equations: Iterative Methods, Springer, Berlin, 1977. · doi:10.1007/BFb0116614
[30] D’Azevedo, Int. J. Comput. Math. 44 pp 301– (1992)
[31] and , ’Two variants of minimum discarded fill ordering’, in and (eds), Proc. IMACS Int. Symp. on Iterative Methods in Linear Algebra, North-Holland, Amsterdam, 1992, pp. 603-612. · Zbl 0785.65021
[32] and , Computer Solutions of Large Sparse Positive-Definite Systems, Prentice-Hall, Englewood Cliffs, NJ, 1981.
[33] Peeters, Int. J. Numer. Methods Fluids 13 pp 135– (1991)
[34] and , ’Iterative methods for the steady-state compressible Navier-Stokes equations’, Can. Applied Math Ann. Meeting, Ottawa, May 1991.
[35] Ghia, J. Comput. Phys. 48 pp 387– (1982)
[36] Armaly, J. Fluid Mech. 127 pp 473– (1983)
[37] Tinney, Proc. IEEE 55 pp 1801– (1967)
[38] and , Finite Element Solution of Boundary Value Problems, Theory and Computation, Academic, New York, 1984.
[39] Langtangen, Int. J. Numer. Methods Fluids 9 pp 213– (1989)
[40] Thompson, J. Comput. Phys. 82 pp 94– (1989)
[41] Gresho, Int. J. Numer. Methods Fluids 17 pp 501– (1993)
[42] Gresho, Int. J. Numer. Methods Fluids 4 pp 619– (1984)
[43] Sohn, Int. J. Numer. Methods Fluids 8 pp 1469– (1988)
[44] Bruneau, J. Comput. Phys. 89 pp 389– (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.