zbMATH — the first resource for mathematics

On the Hamiltonian formalism for Korteweg-de Vries type hierarchies. (English. Russian original) Zbl 0790.58022
Funct. Anal. Appl. 26, No. 2, 140-142 (1992); translation from Funkts. Anal. Prilozh. 26, No. 2, 79-82 (1992).
For most of the known hierarchies of integrable nonlinear equations, the phase space admits a pair of Poisson structures that satisfies the following Adler-Kostant theorem [M. A. Semenov-Tyan-Shanskij, Funct. Anal. Appl. 17, 259-272 (1983); translation from Funkts. Anal. Prilozh. 17, No. 4, 17-33 (1983; Zbl 0535.58031)]:
Suppose that for \(\xi\) and \(\eta\) from the cotangent bundle of the phase space there is a solution \(R\) of the modified classical Yang-Baxter equation \[ [R\xi,R\eta] - R([R\xi, \eta]+ [\xi, R\eta)] + \alpha[\xi,\eta] = 0.\tag{1} \] Let \(H_ 1\) be a Hamiltonian operator, and let \(\{I_ n\}\) be the ring of annihilators of the Poisson bracket determined by \(H_ 1\). Then the \(I_ n\) are in involution with respect to the Poisson bracket associated with the Hamiltonian operator \(H_ 2 = H_ 1R + R^*H_ 1\).
In this paper we study the Hamiltonian structure on the phase space that is the dual space of the algebra of Laurent series with coefficients in the algebra of vector fields on the circle \(S^ 1\). A hierarchy of integrable systems constructed according to the Adler-Kostant scheme is shown to exist in this phase space. Under additional conditions, this hierarchy reduces to Korteweg-de Vries (KdV) type hierarchies in the form introduced by S. I. Al’ber in J. Lond. Math. Soc., II. Ser. 19, 467-480 (1979; Zbl 0413.35064).

37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
17B65 Infinite-dimensional Lie (super)algebras
35Q53 KdV equations (Korteweg-de Vries equations)
Full Text: DOI
[1] M. A. Semenov-Tyan’-Shanskii, Funkts. Anal. Prilozhen.,17, No. 4, 17-33 (1983).
[2] S. I. Alber, J. London Math. Soc.,19, No. 2, 467-480 (1979). · Zbl 0413.35064 · doi:10.1112/jlms/s2-19.3.467
[3] A. G. Reiman and M. A. Semenov-Tyan’-Shanskii, Dokl. Akad. Nauk SSSR,251, No. 6, 1310-1314 (1980).
[4] F. Magri, J. Math. Phys.,19, No. 5, 1156-1162 (1978). · Zbl 0383.35065 · doi:10.1063/1.523777
[5] I. M. Gelfand and L. A. Dikii, Funkts. Anal. Prilozhen.,13, No. 3, 43-53 (1979).
[6] B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, Usp. Mat. Nauk,31, No. 1, 55-136 (1976).
[7] B. A. Dubrovin and S. P. Novikov, Usp. Mat. Nauk,44, No. 6, 29-98 (1989).
[8] E. V. Ferapontov, Mat. Sb., No. 9, 1220-1235 (1990).
[9] H. Flashka, A. Newell, and T. Ratiu, Physica D,9, No. 3, 300-332 (1983). · Zbl 0643.35098 · doi:10.1016/0167-2789(83)90274-9
[10] S. I. Alber and M. S. Alber, J. London Math. Soc.,36, No. 2, 176-182 (1987). · Zbl 0609.58011 · doi:10.1112/jlms/s2-36.1.176
[11] A. P. Fordy, A. G. Reiman, and M. A. Semenov-Tyan’-Shanskii, Lett. Math. Phys.,17, 25-29 (1989). · Zbl 0699.58043 · doi:10.1007/BF00420010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.