×

The homotopy type of rational functions. (English) Zbl 0790.55005

Let \(\text{Rat}_ k(\mathbb{C}\mathbb{P}^ n)\) denote the space of degree \(k\), basepoint preserving, holomorphic (equivalently, rational) maps from the Riemann sphere \(S^ 2\) to complex projective space \(\mathbb{C}\mathbb{P}^ n\). In this note we give a relatively short, combinatorial proof that \(\text{Rat}_ k (\mathbb{C}\mathbb{P}^ n)\) is stably homotopy equivalent to a wedge of subquotients of the May-Milgram filtered model for the double loop space of the 3-sphere, \(\Omega^ 2 S^ 3\). This implies that, when \(n=1\), \(\text{Rat}_ k(\mathbb{C}\mathbb{P}^ 1)\) is stably homotopy equivalent to \(K(\beta_{2k},1)\), the Eilenberg-MacLane space associated to Artin’s braid group on \(2k\) strings. A more complicated homological proof of this theorem that extends to other mapping spaces and various applications are discussed in our companion paper [Acta Math. 166, No. 3/4, 163-221 (1991; Zbl 0741.55005)].

MSC:

55P42 Stable homotopy theory, spectra
55P45 \(H\)-spaces and duals

Citations:

Zbl 0741.55005
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Boyer, C. P.; Mann, B. M., Monopoles, non-linear σ-models, and two-fold loop spaces, Commun. Math. Phys., 115, 571-594 (1988) · Zbl 0656.58049 · doi:10.1007/BF01224128
[2] Brown, E. H.; Peterson, F. P., On the stable decomposition of Ω^2S^r+2, Trans. Am. Math. Soc., 243, 287-298 (1978) · Zbl 0404.55003 · doi:10.2307/1997768
[3] Cohen, F. R.; Cohen, R. L.; Mann, B. M.; Milgram, R. J., The topology of rational functions and divisors of surfaces, Acta Math., 166, 3, 163-221 (1991) · Zbl 0741.55005 · doi:10.1007/BF02398886
[4] Cohen, F. R.; Mahowald, M.; Milgram, R. J.; Milgram, R. J., The stable decomposition of the double loop space of a sphere, Algebraic and Geometric Topology, 225-228 (1978), Providence, RI: Am. Math. Soc., Providence, RI · Zbl 0406.55007
[5] Cohen, F. R.; Taylor, L. R.; May, J. P., Splitting of certain spacesC(X), Math. Proc. Camb. Philos. Soc., 84, 465-496 (1978) · Zbl 0408.55006 · doi:10.1017/S0305004100055298
[6] Cohen, R. L., Stable proofs of stable splittings, Math. Proc. Camb. Philos. Soc., 88, 149-151 (1980) · Zbl 0453.55009 · doi:10.1017/S030500410005742X
[7] Dold, A.; Thom, R., Quasifaserungen und unendliche symmetrische Produkte, Ann. Math., 67, 239-281 (1958) · Zbl 0091.37102 · doi:10.2307/1970005
[8] Kahn, D. S.; Barratt, M. G.; Mahowald, M. E., On the stable decomposition of Ω^∞S^∞A, Geometric Applications of Homotopy Theory II, 206-214 (1978), Berlin Heidelberg New York: Springer, Berlin Heidelberg New York · doi:10.1007/BFb0068718
[9] Kahn, D. S.; Priddy, S., Applications of the transfer to stable homotopy theory, Bull. Am. Math. Soc., 78, 981-987 (1972) · Zbl 0265.55009 · doi:10.1090/S0002-9904-1972-13076-3
[10] May, J. P., The Geometry of Iterated Loop Spaces (1972), Berlin Heidelberg New York: Springer, Berlin Heidelberg New York · Zbl 0244.55009
[11] Milgram, R. J., Iterated loop spaces, Ann. Math., 84, 386-403 (1966) · Zbl 0145.19901 · doi:10.2307/1970453
[12] Segal, G. B., The topology of rational functions, Acta Math., 143, 39-72 (1979) · Zbl 0427.55006 · doi:10.1007/BF02392088
[13] Smith, L., Transfer and ramified coverings, Math. Proc. Camb. Philos. Soc., 93, 485-493 (1983) · Zbl 0525.57031 · doi:10.1017/S0305004100060795
[14] Snaith, V. P., A stable decomposition of Ω^n ∑^nX, J. Lond. Math. Soc., II. Ser., 7, 577-583 (1974) · Zbl 0275.55019 · doi:10.1112/jlms/s2-7.4.577
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.