×

zbMATH — the first resource for mathematics

Equivalence of Dirac and Maxwell equations and quantum mechanics. (English) Zbl 0788.53072
The authors employ the formalism of Clifford bundles to further analyze the possible equivalence of the Dirac and Maxwell equations. In particular, they show how their viewpoint simplifies the work of A. A. Campolattaro [Int. J. Theor. Phys. 19, 99-126 (1980; Zbl 0439.35064); and 127-138 (1980; Zbl 0439.35065); ibid. 29, No. 2, 141-155 (1990; Zbl 0705.35137)]. The paper concludes with some implications of this research for quantum mechanics.

MSC:
53Z05 Applications of differential geometry to physics
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Barut, A. O. (1990).Physics Letters A,143, 349.
[2] Campolattaro, A. A. (1980a).International Journal of Theoretical Physics,19, 99. · Zbl 0439.35064
[3] Campolattaro, A. A. (1980b).International Journal of Theoretical Physics,19, 127. · Zbl 0439.35065
[4] Campolattaro, A. A. (1990).International Journal of Theoretical Physics,29, 141. · Zbl 0705.35137
[5] Doubrovine, B., Novikov, S., and Fomenko, A. (1987).G?om?trie Contemporaine, M?thodes et Applications, Part 1, Mir, Moscow.
[6] Figueiredo, V. L., de Oliveira, E. C., and Rodrigues, W. A., Jr. (1990a).International Journal of Theoretical Physics,29, 371. · Zbl 0699.53019
[7] Figueiredo, V. L., de Oliveira, E. C., and Rodrigues, W. A., Jr. (1990b).Algebras Groups, and Geometries,7, 153.
[8] Gueret, P., and Vigier, J. P. (1982a).Lettere Nuovo Cimento,35, 256.
[9] Gueret, P., and Vigier, J. P. (1982b).Lettere Nuovo Cimento,35, 260.
[10] Gueret, P., and Vigier, J. P. (1982c).Lettere Nuovo Cimento,38, 125.
[11] Hestenes, D. (1966).Space-Time Algebra, Gordon and Breach, New York. · Zbl 0183.28901
[12] Hestenes, D. (1967).Journal of Mathematical Physics,8, 789.
[13] Hestenes, D. (1975).Journal of Mathematical Physics,16, 556.
[14] Hestenes, D. (1991).Foundations of Physics,20, 1213.
[15] Jennison, R. C. (1978).Journal of Physics A,11, 1525.
[16] Mackinnon, L. (1978).Foundations of Physics,8, 157.
[17] Mackinnon, L. (1981).Lettere Nuovo Cimento,32, 311.
[18] Maia, A., Jr., Recami, E., Rosa, M. A. F., and Rodrigues, W. A., Jr. (1990).Journal of Mathematical Physics,31, 502. · Zbl 0703.53078
[19] Misner, C. W., and Wheeler, J. A. (1957).Annals of Physics,2, 525. · Zbl 0078.19106
[20] Rainich, G. Y. (1925).Transactions of the American Mathematical Society,27, 106. · JFM 51.0591.11
[21] Riesz, M. (1958). Clifford Number and Spinors, Lecture Series No. 38, Institute for Fluid Mechanics and Applied Mathematics, University of Maryland. · Zbl 0103.38403
[22] Rodrigues, W. A., Jr., and de Oliveira, E. C. (1990).International Journal of Theoretical Physics,29, 397. · Zbl 0699.53020
[23] Rodrigues, W. A., Jr., Faria-Rosa, M. A., Maia, A., Jr., and Recami, E. (1989).Hadronic Journal,12, 187.
[24] Rodrigues, W. A., Jr., and Figueiredo, V. L. (1990).International Journal of Theoretical Physics,29, 413. · Zbl 0699.53021
[25] Rodrigues, W. A., Jr., and Vaz, J., Jr. (1992). Nondispersive de Broglie wavepackets from the free Maxwell equations, submitted.
[26] Vaz, J., Jr., and Rodrigues, W. A., Jr. (1992). Particle and antiparticle configurations of the free Maxwell equations satisfying the Dirac equation, submitted.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.