zbMATH — the first resource for mathematics

The based \(\text{SU}(n)\)-instanton moduli spaces. (English) Zbl 0788.32013
We give an \(L\)-stratification of \({\mathcal M}_ k\), the based moduli space of \(SU(n)\) instantons of charge \(k\) over \(S^ 4\). Then we prove that the stabilization map \(\iota_ k:{\mathcal M}_ k \to {\mathcal M}_{k+1}\) is an equivalence through a range \(q(k)\) which monotonically increases and tends to infinite as \(k \to \infty\). This proves the Atiyah-Jones conjecture for the group \(SU(n)\). As a by-product of the \(L\)- stratification we are able to conclude that \({\mathcal M}_ k\) are simply connected for all \(k\) and all \(n>2\).

32G13 Complex-analytic moduli problems
81T13 Yang-Mills and other gauge theories in quantum field theory
55P35 Loop spaces
Full Text: DOI EuDML
[1] Atiyah, M.F.: Instantons in two and four dimensions. Commun. Math. Phys.93, 437-451 (1984) · Zbl 0564.58040 · doi:10.1007/BF01212288
[2] Atiyah, M.F., Drinfeld, V.G., Hitchin, N.J., Manin, Y.I.: Construction of instantons. Phys. Lett. A65, 185-187 (1978) · Zbl 0424.14004 · doi:10.1016/0375-9601(78)90141-X
[3] Atiyah, M.F., Hitchin, N.J., Singer, I.: Self-duality in four dimensional Riemannian geometry. Proc. R. Soc. Lond., Ser. A362, 425-461 (1978) · Zbl 0389.53011 · doi:10.1098/rspa.1978.0143
[4] Atiyah, M.F., Jones, J.D.: Topological aspects of Yang-Mills theory. Commun. Math. Phys.61, 97-118 (1978) · Zbl 0387.55009 · doi:10.1007/BF01609489
[5] Boyer, C.P., Hurtubise, J.C., Mann, B.M., Milgram, R.J.: The topology of instanton moduli spaces. I: The Atiyah-Jones conjecture, Ann. Math.137, 561-609 (1993) · Zbl 0816.55002 · doi:10.2307/2946532
[6] Boyer, C.P., Hurtubise, J.C., Mann, B.M., Milgram, R.J.: The topology of the space of rational maps into generalized flag manifolds. (Preprint) · Zbl 0844.57037
[7] Boyer, C.P., Mann, B.M., Waggoner, D.: On the homology of SU(n) instantons, Trans. Am. Math. Soc.323, 529-561 (1991) · Zbl 0725.53065 · doi:10.2307/2001544
[8] Boyer, C.P., Mann, B.M.: Homology operations on instantons. J. Differ. Geom.28, 423-465 (1988) · Zbl 0666.55003
[9] Crawford, T.A.: Full holomorphic maps from the Riemann sphere to complex projective spaces. J. Differ. Geom. (to appear) · Zbl 0784.58015
[10] Donaldson, S.K., Kronheimer, P.B.: The geometry of four-manifolds. Oxford: Oxford University Press, 1990 · Zbl 0820.57002
[11] Donaldson, S.K.: Instantons and geometric invariant theory. Commun. Math. Phys.93, 453-461 (1984) · Zbl 0581.14008 · doi:10.1007/BF01212289
[12] Gravesen, J.: On the topology of spaces of holomorphic maps. Acta Math.162, 247-286 (1989) · Zbl 0696.58014 · doi:10.1007/BF02392839
[13] Hartshorne, R.: Algebraic geometry. Berlin Heidelberg New York: Springer 1977 · Zbl 0367.14001
[14] Hurtubise, J.C.: Instantons and jumping lines. Commun. Math. Phys.105, 107-122 (1986) · Zbl 0596.32031 · doi:10.1007/BF01212344
[15] Mann, B.M., Milgram, R.J.: Some spaces of holomorphic maps to complex Grassmann manifolds. J. Differ. Geom.33, 301-324 (1991) · Zbl 0736.54008
[16] Mann, B.M., Milgram, R.J.: On the moduli space of Su(n) monopoles and holomorphic maps to flag manifolds. UNM and Stanford University 1991 · Zbl 0790.53053
[17] Taubes, C.H.: The stable topology of self-dual moduli spaces. J. Differ. Geom.29, 163-230 (1989) · Zbl 0669.58005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.