×

zbMATH — the first resource for mathematics

The critical temperature and gap solution in the Bardeen-Cooper- Schrieffer theory of superconductivity. (English) Zbl 0787.65105
The authors study the problem of numerical approximation of the critical transition temperature and the energy gap function in the Bardeen-Cooper- Schrieffer equation, arising in superconductivity theory. Two discretized versions of the equation are introduced. Numerical results are presented. Besides, the approximations of a full space solution and the associated critical temperature by solution sequences constructed on bounded domains are also investigated.
Reviewer: L.-I.Anita (Iaşi)

MSC:
65R20 Numerical methods for integral equations
45G10 Other nonlinear integral equations
82B26 Phase transitions (general) in equilibrium statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Billard, P. and Fano, G., An existence proof for the gap equation in the super-conductivity theory,Comm. Math. Phys. 10, 274-279 (1968). · Zbl 0164.57002
[2] Davydov, A. S., Theoretical investigation of high-temperature superconductivity,Phys. Rep. 190, 191-306 (1990). · Zbl 1211.82067 · doi:10.1016/0370-1573(90)90061-6
[3] Du, Y., Uniqueness results for the gap equation in the theory of superconductivity, Preprint, 1992.
[4] Enz, C. P., Introduction to the physics of high-temperature superconductors,Helv. Phys. Acta 61, 741-759 (1988).
[5] Hugenholtz, N. M., Quantum theory of many-body systems,Rep. Progr. Phys. 28, 201-247 (1965). · Zbl 0184.54801 · doi:10.1088/0034-4885/28/1/307
[6] Van Hemmen, L., Linear fermion systems, molecular field models, and the KMS condition,Fortschr. Phys. 26, 379-439 (1978).
[7] Kitamura, M., Nonlinear integral equation of the Hammerstein type,Progr. Theoret. Phys. 30, 435-442 (1963). · doi:10.1143/PTP.30.435
[8] Weger, M. and Englman, R., A dynamic Jahn-Teller theory for high-T c superconductivity,Physica A 168, 324-337 (1990). · doi:10.1016/0378-4371(90)90384-5
[9] Weger, M., Engleman, R., and Halperin, B., Oscillatory solutions of the BCS gap equation,Solid State Comm. 71, 17-72 (1988). · doi:10.1016/0038-1098(89)90164-6
[10] Yang, Y., On the Bardeen-Cooper-Schrieffer integral equation in the theory of superconductivity,Lett. Math. Phys. 22, 27-37 (1991). · Zbl 0729.45009 · doi:10.1007/BF00400375
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.