×

Runge-Kutta pairs for periodic initial value problems. (English) Zbl 0787.65052

Pairs of different order (namely \(p\) and \(p-1\)) explicit \(s\)-stage Runge- Kutta formulae may be used to solve the initial value problem, the difference between the two solutions being used for local error approximation.
In this paper, the authors discuss the phase-lag property of such methods when applied to problems with periodic solutions. They analyze two families, one of 5(4) pairs and the other of 6(5) pairs and from each select a pair with the highest possible order of phase-lag. New 5(4) pairs, based on pairs proposed by E. Fehlberg [Computing 6, 61-71 (1970; Zbl 0217.530)] and by J. R. Dormand and P. J. Prince [J. Comput. Appl. Math. 6, 19-26 (1980; Zbl 0448.65045)], respectively, are of phase-lag order 8(4) and 8(6) and are not dissipative. The 6(5) pairs are of phase-lag order 10(6) and are dissipative (a dissipative scheme has non-vanishing imaginary stability interval).
The paper concludes by demonstrating the generally improved performance of the new methods over other well known methods on some commonly utilized test problems whose solutions exhibit periodic behaviour.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Brusa, L., Nigro, L.: A one-step method for direct integration of structural dynamic equations. Intern. J. Numer. Methods Eng.15, 685–699 (1980). · Zbl 0426.65034 · doi:10.1002/nme.1620150506
[2] Butcher, J. C.: On Runge-Kutta processes of high order. J. Aust. Math. Soc.4, 179–194 (1964). · Zbl 0244.65046 · doi:10.1017/S1446788700023387
[3] Butcher, J. C.: Numerical analysis of ordinary differential equations. New York: J. Wiley 1987. · Zbl 0616.65072
[4] Chawla, M. M., Rao, R. S.: A Numerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems II. Explicit method, J. Comput. Appl. Math.15, 329–337 (1986). · Zbl 0598.65054 · doi:10.1016/0377-0427(86)90224-4
[5] Chawla, M. M., Rao, P. S.: An explicit sixth-order method with phase-lag of order eight fory”=f(t, y). J. Comput. Appl. Math.17, 365–368 (1987). · Zbl 0614.65084 · doi:10.1016/0377-0427(87)90113-0
[6] Coleman, J. P.: Numerical methods fory”=f(x, y) via rational approximation for the cosine. I.M.A.J. Numer. Anal.9, 145–165 (1989). · Zbl 0675.65072
[7] Dooren, R. van: Stabilization of Cowell’s classical finite difference method for numerical integration. J. Comp. Physics16, 186–192 (1974). · Zbl 0294.65042 · doi:10.1016/0021-9991(74)90112-0
[8] Dormand, J. R., Lockyer, M. R., McCorrigan, N. E., Prince, P. J.: Global error estimation with Runge-Kutta triples. J. Comput. Appl. Math.7, 835–846 (1989). · Zbl 0683.65054
[9] Dormand, J. R., Prince, P. J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math.6, pp. 19–26 (1980). · Zbl 0448.65045 · doi:10.1016/0771-050X(80)90013-3
[10] Fehlberg, E.: Low order classical Runge-Kutta formulas with stepsize control and their application to some heat-transfer problems. NASA TR R-315 (1969).
[11] Gladwell, I., Thomas, R.: Damping and phase analysis of some methods for solving second order ordinary differential equations. Internat. J. Numer. Methods Engng.,19, 495–503 (1983). · Zbl 0513.65053 · doi:10.1002/nme.1620190404
[12] Hall, G., Enright, W. H., Hull, T. E., Sedgwick, A. E.: DETEST: A program for comparing numerical methods for ordinary differential equatons. Dept. of Computer Science Tech. Rep. No. 60, University of Toronto, Canada, 1973.
[13] Houwen, P. J. van der, Sommeijer, B. P.: Predictor-corrector methods for periodic second order initial value problems. I.M.A. J. Numer. Anal.7, 407–442 (1987). · Zbl 0631.65074
[14] Houwen, P. J. van der, Sommeijer, B. P.: Explicit Runge-Kutta (-Nystrom) methods with reduced phase errors for computing oscillating solutions. SIAM J. Numer. Anal.24, 595–617 (1987). · Zbl 0624.65058 · doi:10.1137/0724041
[15] Papageorgiou, G., Tsitouras, Ch. Papakostas, S., N.: Runge: Kutta pairs for periodic Initial Value Problems. Report NA93-1, Department of Mathematics, National Technical University of Athens, 1993. · Zbl 0787.65052
[16] Verner, J. H.: Some Runge-Kutta formula pairs. SIAM J. Numer. Anal.28, 496–511 (1991). · Zbl 0726.65082 · doi:10.1137/0728027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.