×

zbMATH — the first resource for mathematics

Probabilistic logic programming. (English) Zbl 0781.68038
The logic programming language for expressing a probabilistic information is proposed. \(P\)-programs are finite sets of clauses of a special kind: the head of a clause is an atomic formula loaded by a closed interval \([a,b]\), and the body is a set of formulae (not only atomic) which are loaded by closed intervals too. The formula \(F:[a,b]\) denotes that the probability of \(F\) lies in the interval \([a,b]\).
The fixpoint semantic and probabilistic model semantics are developed for such programs. A refutational procedure for a query processing to \(P\)- programs is proposed which is based on SLD-resolution.
Reviewer: N.Zamov (Kazan’)

MSC:
68N17 Logic programming
68T99 Artificial intelligence
68T15 Theorem proving (deduction, resolution, etc.) (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson, E.J.; Nash, P., ()
[2] Bacchus, F., (), Research Report CS-88-31
[3] Baldwin, J.F., Evidential support logic programming, J. fuzzy sets systems, 24, 1-26, (1987) · Zbl 0639.68105
[4] Bandler, W.; Kohout, L.J., Unified theory of multivalued logical operations in the light of the checklist paradigm, IEEE trans. systems man cybernet, (1984)
[5] Blair, H.A.; Subrahmanian, V.S.; Blair, H.A.; Subrahmanian, V.S., Paraconsistent logic programming, (), 68, 340-360, (1987), preliminary version · Zbl 0631.68009
[6] Blair, H.A.; Subrahmanian, V.S., Paraconsistent foundations for logic programming, J. non-classical logic, 5, 45-73, (1988) · Zbl 0689.03012
[7] Boole, G., ()
[8] Boolos, G.; Jeffrey, R., ()
[9] Carnap, R., ()
[10] Cheeseman, P., In defense of probability, (), 1002-1009
[11] da Costa, N.C.A.; Abe, J.M.; Subrahmanian, V.S., Remarks on annotated logic, Z. math. logik grundlag. math., 37, 561-570, (1991) · Zbl 0846.03010
[12] da Costa, N.C.A.; Subrahmanian, V.S.; Vago, C., The paraconsistent logics P\(T\), Z. math. logik grundlag. math., 37, 139-148, (1991) · Zbl 0741.03013
[13] Dempster, A.P., A generalization of Bayesian inference, J. roy. statis. soc. ser. B, 30, 205-247, (1968) · Zbl 0169.21301
[14] Fagin, R.; Halpern, J., Uncertainty, belief and probability, () · Zbl 0718.68066
[15] Fagin, R.; Halpern, J.Y.; Megiddo, N., A logic for reasoning about probabilities, (1989), draft manuscript
[16] Fenstad, J.E., The structure of probabilities defined on first-order languages, (), 251-262
[17] Fitting, M.C., A Kripke-Kleene semantics for logic programming, J. logic programming, 4, 295-312, (1985) · Zbl 0589.68011
[18] Fitting, M.C., Logic programming on a topological bilattice, Fund. inform., 11, 209-218, (1988) · Zbl 0647.68096
[19] Fitting, M.C., Bilattices and the semantics of logic programming, J. logic programming, 11, 91-116, (1991) · Zbl 0757.68028
[20] Fitting, M.C., Bilattices and the theory of truth, J. philos. logic, (1988), to appear
[21] Frechet, M., Généralisations du théorème des probabilités totales, Fund. math., 25, 379-387, (1935) · JFM 61.1290.06
[22] Gaifman, H., Concerning measures in first order calculi, Israel J. math., 2, 1-17, (1964) · Zbl 0192.03302
[23] Gnedenko, B.V.; Khinchin, A.Y., ()
[24] Hailperin, T., Probability logic, Notre dame J. formal logic, 25, 198-212, (1984) · Zbl 0547.03018
[25] Halmos, P., ()
[26] Karwan, M.H.; Lofti, V.; Telgen, J.; Zionts, S., ()
[27] Keisler, H.J., Probability quantifiers, () · Zbl 0217.30503
[28] Kelley, J.L., ()
[29] Kifer, M.; Li, A., On the semantics of rule-based expert systems with uncertainty, (), 102-117
[30] Kifer, M.; Lozinskii, E., RI: A logic for reasoning with inconsistency, (), 253-262
[31] Kifer, M.; Lozinskii, E.L., A logic for reasoning with inconsistency, (1989), submitted for publication · Zbl 0717.03005
[32] Kifer, M.; Subrahmanian, V.S., Theory of generalized annotated logic programming and its applications, J. logic programming, 12, 335-367, (1992)
[33] Kolmogorov, A.N., Foundations of the theory of probability, (1956), Chelsea, New York · Zbl 0074.12202
[34] Kyburg, H., ()
[35] Lassez, J.-L.; Huynh, T.; McAloon, K., Simplification and elimination of redundant linear arithmetic constraints, (), 37-51
[36] Lloyd, J.W., ()
[37] Lukasiewicz, J., Logical foundations of probability theory, (), 16-43
[38] Martelli, A.; Montanari, U., An efficient unification algorithm, (), 258-282 · Zbl 0478.68093
[39] Morishita, S., (), Technical Report RT 5006
[40] Ng, R.T.; Subrahmanian, V.S., Probabilistic logic programming, () · Zbl 0781.68038
[41] Nilsson, N., Probabilistic logic, Ai j., 28, 71-87, (1986) · Zbl 0589.03007
[42] Peirce, C.S., A theory of probable inference, (), 126-181
[43] Schrijver, A., ()
[44] Scott, D.S.; Krauss, P., Assigning probabilities to logical formulas, () · Zbl 0202.29905
[45] Shafer, G., ()
[46] Shapiro, E., Logic programs with uncertainties: A tool for implementing expert systems, (), 529-532
[47] Schoenfield, J., ()
[48] Subrahmanian, V.S., On the semantics of quantitative logic programs, (), 173-182
[49] Subrahmanian, V.S., Mechanical proof procedures for many valued lattice based logic programming, J. non-classical logic, 7, 7-41, (1990) · Zbl 0724.03012
[50] Subrahmanian, V.S., Paraconsistent disjunctive deductive databases, Theoret. comput. sci., 93, 115-141, (1992) · Zbl 0745.68042
[51] van Emden, M.H., Quantitative deduction and its fixpoint theory, J. logic programming, 4, 37-53, (1986) · Zbl 0609.68068
[52] Zadeh, L.A., Fuzzy sets, Inform. and control, 8, 338-353, (1965) · Zbl 0139.24606
[53] Zadeh, L.A., Fuzzy algorithms, Inform. and control, 12, 94-102, (1968) · Zbl 0182.33301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.