×

zbMATH — the first resource for mathematics

The instability of the steady flow past spheres and disks. (English) Zbl 0780.76027
We consider the instability of the steady, axisymmetric base flow past a sphere, and a circular disk (oriented broadside-on to the incoming flow). Finite-element methods are used to compute the steady axisymmetric base flows, and to examine their linear instability to three-dimensional modal perturbations.

MSC:
76E05 Parallel shear flows in hydrodynamic stability
76D05 Navier-Stokes equations for incompressible viscous fluids
76M10 Finite element methods applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1143/JPSJ.11.1104 · doi:10.1143/JPSJ.11.1104
[2] Strykowski, J. Fluid Mech. 218 pp 71– (1990)
[3] Sakamoto, Trans. ASME 112 pp 386– (1990)
[4] Jackson, J. Fluid Mech. 182 pp 23– (1987)
[5] DOI: 10.1137/0912045 · Zbl 0724.76022 · doi:10.1137/0912045
[6] DOI: 10.1146/annurev.fl.23.010191.002213 · doi:10.1146/annurev.fl.23.010191.002213
[7] DOI: 10.1063/1.1761531 · doi:10.1063/1.1761531
[8] Fornberg, J. Fluid Mech. 225 pp 655– (1991)
[9] Fornberg, J. Fluid Mech. 190 pp 471– (1988)
[10] Achenbach, J. Fluid Mech. 62 pp 209– (1974)
[11] DOI: 10.1016/0010-4655(89)90149-5 · Zbl 0798.65053 · doi:10.1016/0010-4655(89)90149-5
[12] Roos, AIAA J. 9 pp 285– (1971)
[13] Provansal, J. Fluid Mech. 182 pp 1– (1987)
[14] Natarajan, Proc. R. Soc. Lond. A 441 pp 211– (1993) · Zbl 0816.76048 · doi:10.1098/rspa.1993.0058
[15] DOI: 10.1016/0021-9991(92)90315-P · Zbl 0759.65070 · doi:10.1016/0021-9991(92)90315-P
[16] DOI: 10.1063/1.861328 · doi:10.1063/1.861328
[17] Magarvey, Can. J. Phys. 43 pp 1649– (1965) · doi:10.1139/p65-154
[18] DOI: 10.1063/1.1706409 · doi:10.1063/1.1706409
[19] Magarvey, Can. J. Phys. 39 pp 1418– (1961) · doi:10.1139/p61-169
[20] Kim, J. Fluid Mech. 211 pp 73– (1990)
[21] DOI: 10.1063/1.1761532 · doi:10.1063/1.1761532
[22] DOI: 10.1063/1.1711133 · Zbl 0116.18903 · doi:10.1063/1.1711133
[23] Taneda, J. Fluid Mech. 85 pp 187– (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.