×

zbMATH — the first resource for mathematics

Optimal excitation of three-dimensional perturbations in viscous constant shear flow. (English) Zbl 0779.76030
The three-dimensional perturbations to viscous constant shear flow that increase maximally in energy over a chosen time interval are obtained by optimizing over the complete set of analytic solutions. The optimal structures can be interpreted as combinations of two fundamental types of motion associated with two distinguishable growth mechanisms: streamwise vortices growing by advection of mean streamwise velocity to form streamwise streaks, and upstream tilting waves growing by the down gradient Reynolds stress mechanism of two-dimensional shear instability. The optimal excitation over a chosen interval of time comprises a combination of these two mechanisms, characteristically giving rise to tilted roll vortices with greatly amplified perturbation energy. It is suggested that these disturbances provide the initial growth leading to transition to turbulence, in addition to providing an explanation for coherent structures in a wide variety of turbulent shear flows.

MSC:
76F10 Shear flows and turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1098/rspa.1928.0086 · JFM 54.0924.01
[2] DOI: 10.1017/S0022112075003254
[3] DOI: 10.1146/annurev.fl.20.010188.002043
[4] DOI: 10.1063/1.866609
[5] DOI: 10.1063/1.858386
[6] Orr W. M’F., Proc. R. Irish Acad. Ser. A 27 pp 9– (1907)
[7] DOI: 10.1017/S0022112080000122 · Zbl 0428.76049
[8] DOI: 10.1137/0153002 · Zbl 0778.34060
[9] DOI: 10.1017/S0022112092000065
[10] DOI: 10.1063/1.858663
[11] DOI: 10.1017/S0022112062000014 · Zbl 0131.41901
[12] DOI: 10.1017/S0022112085001896
[13] DOI: 10.1017/S0022112087000569
[14] DOI: 10.1063/1.857808
[15] DOI: 10.1017/S0022112070000514 · Zbl 0193.27104
[16] DOI: 10.1017/S0022112058000379
[17] DOI: 10.1080/14786448708628078
[18] DOI: 10.1098/rspa.1986.0061 · Zbl 0602.76032
[19] DOI: 10.1175/1520-0469(1987)044<2191:DDIS>2.0.CO;2
[20] DOI: 10.1063/1.861156 · Zbl 0308.76030
[21] DOI: 10.1017/S0022112090000532
[22] DOI: 10.1098/rspa.1937.0036 · JFM 63.1358.03
[23] DOI: 10.1017/S0022112066000077
[24] DOI: 10.1063/1.866118
[25] DOI: 10.1007/BF00266474 · Zbl 0141.43803
[26] DOI: 10.1063/1.858367
[27] DOI: 10.1002/qj.49709741407
[28] DOI: 10.1175/1520-0469(1989)046<1193:OEOBW>2.0.CO;2
[29] DOI: 10.1007/BF01591113 · Zbl 0164.29003
[30] Joseph D. D., Q. Appl. Math. 26 pp 575– (1969) · Zbl 0172.54804
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.