×

Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy. (English) Zbl 0778.17018

This paper concerns toroidal Lie algebras, certain intersection matrix Lie algebras defined by Slodowy, and their relationship to one another and to certain Lie algebra analogues of Steinberg groups. The main result of the paper is the identification of the intersection matrix algebras arising from multiply-affinized Cartan matrices of types \(A\), \(D\) and \(E\) with certain Steinberg Lie algebras and toroidal Lie algebras. A major part of the paper studies and classifies Lie algebras graded by finite root systems. These become the principal tool in the analysis of intersection matrix algebras.

MSC:

17B65 Infinite-dimensional Lie (super)algebras
17B70 Graded Lie (super)algebras
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] [Be] Berman, S.: On generators and relations for certain involutory subalgebras of Kac-Moody Lie algebras. Commun. Algebra17 (12), 3165–3185 (1989) · Zbl 0693.17012 · doi:10.1080/00927878908823899
[2] [BM] Benkart, G.M., Moody, R.V.: Derivations, central extensions and affine Lie algebras. Algebras Groups and Geom.3, 456–492 (1986) · Zbl 0619.17014
[3] [Bo] Bourbaki, N.: Groupes et algèbres de Lie, Chap. IV, V, VI. Paris: Hermann 1968
[4] [Ca] Carter, R.W.: Simple Groups of Lie Type. London: Wiley 1972 · Zbl 0248.20015
[5] [Fa] Faulkner, J.R.: Barbilian Planes. Geom. Dedicata30, 125–181 (1989) · Zbl 0708.51005 · doi:10.1007/BF00181549
[6] [Ga] Garland, H.: The arithmetic theory of loop groups. Publ. Math., Inst. Hautes Étud. Sci.52, 5–136 (1980) · Zbl 0475.17004 · doi:10.1007/BF02684779
[7] [Hu] Humphreys, J.B.: Introduction to Lie algebras and representation theory. (Grad. Texts Math., vol. 9), Berlin Heidelberg New York: Springer 1972 · Zbl 0254.17004
[8] [Ka] Kassel, C.: Kähler Differentials and coverings of complex simple Lie algebras extended over a commutative ring. J. Pure Appl. Algebra34, 265–275 (1984) · Zbl 0549.17009 · doi:10.1016/0022-4049(84)90040-9
[9] [KL] Kassel, C., Loday, J.-L.: Extensions centrales d’algèbres de Lie. Ann. Inst. Fourier32(4), 119–142 (1982) · Zbl 0485.17006
[10] [MP] Moody, R., Pianzola, A.: Lie algebras with triangular decomposition. New York: J. Wiley 1992
[11] [MRY] Moody, R.V., Eswara Rao, S., Yokonuma, T.: Toroidal Lie algebras and vertex representations. Geom. Dedicata35, 283–307 (1990) · Zbl 0704.17011 · doi:10.1007/BF00147350
[12] [MY] Morita, J., Yoshii, Y.: Universal central extensions of Chevalley algebras over Laurent series polynomial rings and G.I.M. Lie algebras. Proc. Japan Acad., Ser. A61, 179–181 (1985) · Zbl 0581.17010 · doi:10.3792/pjaa.61.179
[13] [PS] Pressley, A., Segal, G.: Loop groups. Oxford: Oxford University Press 1986 · Zbl 0618.22011
[14] [Sa] Santharoubane, L.J.: The second cohomology group for Kac-Moody Lie algebras and Kähler differentials. J. Algebra,125 (No. 1), 13–26 (1989) · Zbl 0714.17017 · doi:10.1016/0021-8693(89)90290-1
[15] [Se] Seligman, G.: Rational methods in Lie algebras (Lect. Notes Pure Appl. Math.) New York: M. Dekker 1976 · Zbl 0334.17002
[16] [Sl1] Slodowy, P.: Beyond Kac-Moody algebras and inside. Can. Math. Soc. Conf. Proc.5, 361–371 (1986)
[17] [Sl2] Slodowy, P.: Singularitäten, Kac-Moody-Lie algebren, assoziierte Gruppen und Verallgemeinerungen. Habiliationsschrift, Universität Bonn (March 1984)
[18] [St] Steinberg, R.: Lectures on Chevalley Groups (notes by J. Faulkner and R. Wilson). Yale Univ. Lect. Notes (1967)
[19] [VdK] Van der Kallen, W.: Infinitesimally Central Extensions of Chevalley Groups. (Lect. Notes Math. vol. 356) Berlin Heidelberg New York: Springer 1973 · Zbl 0275.17006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.