×

zbMATH — the first resource for mathematics

A cost comparison of boundary element and finite element methods for problems of time-harmonic acoustics. (English) Zbl 0775.76095

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76M15 Boundary element methods applied to problems in fluid mechanics
76Q05 Hydro- and aero-acoustics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L.S. Schuetz, Private communication, 1991.
[2] Coyette, J.P.; Fyfe, K.R., An improved formulation for acoustic eigenmode extraction from boundary element models, (), 139-144
[3] Manolis, G.D.; Beskos, D.E., Dynamic response of lined tunnels by an isoparametric boundary element method, Comput. methods appl. mech. engrg., 36, 291-307, (1983) · Zbl 0487.73105
[4] Golub, G.H.; van Loan, C.F., Matrix computations, (1983), Johns Hopkins Univ. Press Baltimore, MD · Zbl 0559.65011
[5] Hughes, T.J.R., The finite element method: linear static and dynamic finite element analysis, (1987), Prentice Hall Englewood Cliffs, NJ
[6] Ferencz, R.M., Element-by-element preconditioning techniques for large-scale, vectorized finite element analysis in nonlinear solid and structural analysis, ()
[7] Chertock, G., Integral equation methods in sound radiation and scattering from arbitrary structures, NSRDC technical report 3538, (1971), Washington, DC
[8] Kleinman, R.E.; Roach, G.F., Boundary integral equations for the three-dimensional Helmholtz equation, SIAM rev., 16, 214-236, (1974) · Zbl 0253.35023
[9] Shaw, R.P., Integral equation methods in acoustics, (), 221-244
[10] Copely, L.G., Fundamental results concerning integral representations in acoustic radiation, J. acoust. soc. amer., 44, 28-32, (1968) · Zbl 0162.57204
[11] Kupradze, V.D.; Kupradze, V.D., Fundamental problems in the mathematical theory of diffraction (steady state processes), N.B.S. rep. 2008, (1952), translated by C.D. Benster · Zbl 0227.73005
[12] Lamb, H., Hydrodynamics, (1932), Cambridge Univ. Press Cambridge · JFM 26.0868.02
[13] Stakgold, I., ()
[14] Wilcox, C.H., Scattering theory for the d’Alembert equation in exterior domains, (1975), Springer Berlin · Zbl 0299.35002
[15] Schenck, H.A., Improved integral formulation for acoustic radiation problems, J. acoust. soc. amer., 44, 41-58, (1968) · Zbl 0187.50302
[16] Jones, D.S., Integral equations for the exterior acoustic problem, Quart. J. mech. appl. math., 27, 129-142, (1974) · Zbl 0281.45006
[17] Krishnasamy, G.; Schmerr, L.W.; Rudolphi, T.J.; Rizzo, F.J., Hypersingular boundary integral equations: some applications in acoustic and elastic wave scattering, ASME J. appl. mech., 57, 404-414, (1990) · Zbl 0729.73251
[18] Amini, S.; Ke, C.; Harris, P.J., Iterative solution of boundary element equations for the exterior Helmholtz problem, (), 123-128
[19] Liu, Y.J.; Rizzo, F.J., A weakly singular form of the hypersingular boundary integral equation applied to 3-D acoustic wave problems, Comput. methods appl. mech. engrg., 96, 271-287, (1992) · Zbl 0754.76072
[20] P.P. Goswami, T.J. Rudolphi, F.J. Rizzo and D.J. Shippy, A boundary element model for acoustic-elastic interaction with applications in ultrasonic NDE, J. Nondestructive Eval., to appear.
[21] F.J. Rizzo and P.P. Goswami, Private communication, 1990.
[22] Abboud, N.N.; Pinsky, P.M., Finite element solution and dispersion analysis for the transient structural acoustic problem, Appl. mech. rev., 43, 381-388, (1990)
[23] Astley, R.J.; Eversman, W., Finite element formulations for acoustic radiation, J. sound vibration, 88, 47-64, (1983) · Zbl 0538.73036
[24] Harari, I.; Hughes, T.J.R., Design and analysis of finite element methods for the Helmholtz equation in exterior domains, Appl. mech. rev., 43, 366-373, (1990)
[25] Harari, I.; Hughes, T.J.R., Finite element methods for the Helmholtz equation in an exterior domain: model problems, Comput. methods appl. mech. engrg., 87, 59-96, (1991) · Zbl 0760.76047
[26] Oden, J.T.; Demkowicz, L.; Bennighof, J., Fluid-structure interaction in underwater acoustics, ASME appl. mech. rev., 43, 374-380, (1990)
[27] Pinsky, P.M.; Abboud, N.N., Transient finite element analysis of the exterior structural acoustics problem, (), 35-48
[28] Bettess, P., Infinite elements, Internat. J. numer. methods engrg., 11, 53-64, (1977) · Zbl 0362.65093
[29] Bayliss, A.; Turkel, E., Radiation boundary conditions for wave-like equations, Comm. pure appl. math., 33, 707-725, (1980) · Zbl 0438.35043
[30] Givoli, D.; Keller, J.B., A finite element method for large domains, Comput. methods appl. mech. engrg., 76, 41-66, (1989) · Zbl 0687.73065
[31] Keller, J.B.; Givoli, D., Exact non-reflecting boundary conditions, J. comput. phys., 82, 172-192, (1989) · Zbl 0671.65094
[32] Hughes, T.J.R.; Brooks, A.N., A multi-dimensional upwind scheme with no crosswind diffusion, (), 19-35 · Zbl 0423.76067
[33] Franca, L.P.; Hughes, T.J.R., Two classes of mixed finite element methods, Comput. methods appl. mech. engrg., 69, 89-129, (1988) · Zbl 0651.65078
[34] Hughes, T.J.R.; Franca, L.P.; Hulbert, G.M., A new finite element formulation for computational fluid dynamics: VIII. the Galerkin/least-squares method for advective-diffusive equations, Comput. methods appl. mech. engrg., 73, 173-189, (1989) · Zbl 0697.76100
[35] Hughes, T.J.R.; Franca, L.P.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. circumventing the babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. methods appl. mech. engrg., 59, 85-99, (1986) · Zbl 0622.76077
[36] Silvester, D.J.; Kechkar, N., Stabilised bilinear-constant velocity-pressure finite elements for the conjugate gradient solution of the Stokes problem, Comput. methods appl. mech. engrg., 79, 71-86, (1990) · Zbl 0706.76075
[37] Wilson, E.L., Solution of sparse stiffness matrices for structural systems, () · Zbl 0416.73067
[38] Irons, B.M., A frontal solution program for finite element analysis, Internat. J. numer. methods engrg., 2, 177-202, (1970)
[39] Bettess, P., Operation counts for boundary integral and finite element methods, Internat. J. numer. methods engrg., 17, 306-308, (1981) · Zbl 0445.65101
[40] Shakib, F.; Hughes, T.J.R.; Johan, Z., A multi-element group preconditioned GMRES algorithm for nonsymmetric systems arising in finite element analysis, Comput. methods appl. mech. engrg., 75, 415-456, (1989) · Zbl 0687.76065
[41] Axelsson, O., Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations, Linear algebra appl., 29, 1-16, (1980) · Zbl 0439.65020
[42] Young, D.M.; Jea, K.C., Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods, Linear algebra appl., 34, 159-194, (1980) · Zbl 0463.65025
[43] Saad, Y.; Schultz, M.H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, () · Zbl 0599.65018
[44] Johan, Z.; Hughes, T.J.R.; Shakib, F., A globally convergent matrix-free algorithm for time-marching schemes arising in finite element analysis in fluids, Comput. methods appl. mech. engrg., 87, 281-304, (1991) · Zbl 0760.76070
[45] Burton, A.J.; Miller, G.F., The application of integral equation methods to the numerical solution of some exterior boundary-value problems, (), 201-210 · Zbl 0235.65080
[46] Taylor, R.L.; Wilson, E.L.; Sackett, S.J., Direct solution of equations by frontal and variable band, active column methods, (), 521-552 · Zbl 0457.73064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.