×

zbMATH — the first resource for mathematics

Barotropic flow over finite isolated topography: Steady solutions on the beta-plane and the initial value problem. (English) Zbl 0774.76021
The authors investigate incompressible inviscid flow in a finite-depth fluid layer over an obstacle, a circular cylinder, on the \(\beta\)-plane. They derive steady solutions using conservation of vorticity and Bernoulli’s function, and derive solutions of initial value problems using contour dynamics. Solutions are discussed for various parameter regimes, especially with respect to trapping of fluid above the obstacle and generation of waves, and with respect to steady state solutions as asymptotic states of initial value solutions. The paper should be of interest to oceanographers.

MSC:
76B65 Rossby waves (MSC2010)
76U05 General theory of rotating fluids
86A05 Hydrology, hydrography, oceanography
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Taylor, Proc. R. Soc. Lond 104 pp 213– (1923)
[2] Taylor, Proc. R. Soc. Lond 93 pp 99– (1917)
[3] Rhines, J. Fluid Mech. 37 pp 191– (1969)
[4] Johnson, Geophys. Astrophys. Fluid Dyn. 9 pp 159– (1977)
[5] Janowitz, J. Geophys. Res. 80 pp 4163– (1975)
[6] James, Geophys. Astrophys. Fluid Dyn. 9 pp 159– (1980)
[7] DOI: 10.1175/1520-0469(1969)026 2.0.CO;2 · doi:10.1175/1520-0469(1969)026 · doi:2.0.CO;2
[8] Huppert, Deep-Sea Res. 23 pp 655– (1976)
[9] Huppert, J. Fluid Mech. 67 pp 397– (1975)
[10] Hide, Nature 190 pp 895– (1961)
[11] Boyer, J. Fluid Mech. 141 pp 67– (1984)
[12] Bannon, J. Fluid Mech. 101 pp 281– (1980)
[13] Miles, J. Fluid Mech. 33 pp 803– (1968)
[14] DOI: 10.1175/1520-0485(1971)001 2.0.CO;2 · doi:10.1175/1520-0485(1971)001 · doi:2.0.CO;2
[15] McCartney, J. Fluid Mech. 68 pp 71– (1975)
[16] DOI: 10.1175/1520-0485(1991)021 2.0.CO;2 · doi:10.1175/1520-0485(1991)021 · doi:2.0.CO;2
[17] Johnson, J. Fluid Mech. 149 pp 71– (1984)
[18] Johnson, Geophys. Astrophys. Fluid Dyn. 24 pp 143– (1983)
[19] Johnson, Geophys. Astrophys. Fluid Dyn. 12 pp 35– (1979)
[20] Johnson, J. Fluid Mech. 86 pp 209– (1978)
[21] Verron, J. Fluid Mech. 154 pp 231– (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.