×

zbMATH — the first resource for mathematics

A mechanism for bypass transition from localized disturbances in wall- bounded shear flows. (English) Zbl 0773.76030
The linear, nonlinear and breakdown stages in the transition of localized disturbances in plane Poiseuille flow are studied by direct numerical simulations and analysis of the linearized Navier-Stokes equations. Three-dimensionality plays a key role and allows for algebraic growth of the normal vorticity through the linear lift-up mechanism. The breakdown starts with a local rapid growth of the normal velocity bringing low- speed fluid out from the wall. Soon thereafter a small turbulent spot is formed. This scenario represents a bypass of the regular Tollmien- Schlichting, secondary instability process. The generality of the observed processes is substantiated by use of different types of initial disturbances and by Blasius boundary-layer simulations. The present results point in the direction of universality of the observed transition mechanisms for localized disturbances in wall-bounded shear flows.

MSC:
76E05 Parallel shear flows in hydrodynamic stability
76M25 Other numerical methods (fluid mechanics) (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/BF00281139 · Zbl 0181.54703 · doi:10.1007/BF00281139
[2] DOI: 10.1016/0021-9991(85)90061-0 · Zbl 0573.76036 · doi:10.1016/0021-9991(85)90061-0
[3] Mack, J. Fluid Mech. 73 pp 497– (1976)
[4] Lundbladh, J. Fluid Mech. 229 pp 499– (1991)
[5] Cohen, J. Fluid Mech. 225 pp 575– (1991)
[6] DOI: 10.1063/1.864276 · doi:10.1063/1.864276
[7] DOI: 10.1063/1.858386 · doi:10.1063/1.858386
[8] DOI: 10.1007/BF01061113 · Zbl 0850.76258 · doi:10.1007/BF01061113
[9] Landahl, J. Fluid Mech. 98 pp 243– (1980)
[10] Breuer, J. Fluid Mech. 220 pp 595– (1990)
[11] DOI: 10.1137/0128061 · Zbl 0276.76023 · doi:10.1137/0128061
[12] Breuer, J. Fluid. Mech. 220 pp 569– (1990)
[13] Bertolotti, Bull. Am. Phys. Soc. 35 pp 2230– (1990)
[14] Klingmann, J. Fluid Mech. 240 pp 167– (1992)
[15] DOI: 10.1146/annurev.fl.20.010188.002043 · doi:10.1146/annurev.fl.20.010188.002043
[16] DOI: 10.1146/annurev.fl.23.010191.002431 · doi:10.1146/annurev.fl.23.010191.002431
[17] DOI: 10.1063/1.865884 · doi:10.1063/1.865884
[18] Klebanoff, J. Fluid Mech. 12 pp 1– (1962)
[19] DOI: 10.1063/1.857374 · doi:10.1063/1.857374
[20] Kim, J. Fluid Mech. 177 pp 133– (1987)
[21] DOI: 10.1063/1.863490 · Zbl 0466.76030 · doi:10.1063/1.863490
[22] DOI: 10.1146/annurev.fl.20.010188.002415 · doi:10.1146/annurev.fl.20.010188.002415
[23] DOI: 10.1063/1.866067 · doi:10.1063/1.866067
[24] Zang, Theoret. Comput. Fluid Dyn. 1 pp 41– (1989)
[25] Henningson, Stud. Appl. Maths 87 pp 15– (1992) · Zbl 0751.76032 · doi:10.1002/sapm199287115
[26] Henningson, J. Fluid Mech. 228 pp 183– (1991)
[27] Squire, Proc. R. Soc. Lond. 142 pp 621– (1933)
[28] Spalart, J. Fluid Mech. 178 pp 345– (1987)
[29] Schubauer, J. Aero. Sci. 14 pp 69– (1947) · doi:10.2514/8.1267
[30] Henningson, Stud. Appl. Maths 78 pp 31– (1988) · Zbl 0642.76023 · doi:10.1002/sapm198878131
[31] DOI: 10.1063/1.858367 · doi:10.1063/1.858367
[32] Gustavsson, J. Fluid Mech. 98 pp 149– (1980)
[33] Gustavsson, J. Fluid Mech. 224 pp 241– (1991)
[34] Gustavsson, Stud. Appl. Maths 75 pp 227– (1986) · Zbl 0614.76039 · doi:10.1002/sapm1986753227
[35] DOI: 10.1146/annurev.fl.08.010176.001523 · doi:10.1146/annurev.fl.08.010176.001523
[36] DOI: 10.1137/0153002 · Zbl 0778.34060 · doi:10.1137/0153002
[37] DOI: 10.1063/1.862819 · Zbl 0408.76017 · doi:10.1063/1.862819
[38] Orszag, J. Fluid Mech. 128 pp 347– (1983)
[39] Fasel, AIAA J. 28 pp 29– (1990)
[40] DOI: 10.1063/1.866609 · doi:10.1063/1.866609
[41] Orszag, J. Fluid Mech. 96 pp 159– (1980)
[42] DOI: 10.1063/1.861156 · Zbl 0308.76030 · doi:10.1063/1.861156
[43] Orszag, J. Fluid Mech. 50 pp 689– (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.