×

zbMATH — the first resource for mathematics

Convergence analyses of Galerkin least-squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier-Stokes equations. (English) Zbl 0771.76037

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
76D07 Stokes and related (Oseen, etc.) flows
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hughes, T.J.R.; Franca, L.P.; Hulbert, G.M., A new finite element formulation for computational fluid dynamics: VIII, the Galerkin least-squares method for advective-diffusive equations, Comput. methods appl. mech. engrg., 73, 173-189, (1989) · Zbl 0697.76100
[2] Franca, L.P.; Hughes, T.J.R., Two classes of mixed finite element methods, Comput. methods. appl. mech. engrg., 69, 89-129, (1988) · Zbl 0651.65078
[3] Hughes, T.J.R.; Franca, L.P., A new finite element formulation for computational fluid dynamics: VII. the Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces, Comput. methods appl. mech. engrg., 65, 85-96, (1987) · Zbl 0635.76067
[4] Hughes, T.J.R.; Franca, L.P.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. circumventing the babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. methods appl. mech. engrg., 59, 85-99, (1986) · Zbl 0622.76077
[5] Babuška, I., The finite element method with Lagrangian multipliers, Numer. math., 20, 179-192, (1973) · Zbl 0258.65108
[6] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, RAIRO ser. rouge, 8, 129-151, (1974) · Zbl 0338.90047
[7] Brezzi, F.; Fortin, M., Mixed and hybrid finite element methods, () · Zbl 1009.65067
[8] Girault, V.; Raviart, P.A., Finite element methods for Navier-Stokes equations. theory and algorithms, () · Zbl 0396.65070
[9] Harari, I.; Hughes, T.J.R., What are C and h?: inequalities for the analysis and design of finite element methods, Comput. methods appl. mech. engrg., 97, 157-192, (1992) · Zbl 0764.73083
[10] Douglas, J.; Wang, J., An absolutely stabilized finite element method for the Stokes problem, Math. comp., 52, 495-508, (1989) · Zbl 0669.76051
[11] Franca, L.P.; Frey, S.L.; Hughes, T.J.R., Stabilized finite element methods: I. application to the advective-diffusive model, Comput. methods appl. mech. engrg., 95, 253-276, (1992) · Zbl 0759.76040
[12] L.P. Franca, T.J.R. Hughes and R. Stenberg, Stabilized finite element methods for the Stokes problem, in: R.A. Nicolaides and M.D. Gunzburger, eds., Incompressible Computational Fluid Dynamics-Trends and Advances (Cambridge Univ. Press, Cambridge) in press. · Zbl 1189.76339
[13] Franca, L.P.; Stenberg, R., Error analysis of some Galerkin least squares methods for the elasticity equations, SIAM J. numer. anal., 28, 1680-1697, (1991) · Zbl 0759.73055
[14] Brezzi, F.; Douglas, J., Stabilized mixed methods for the Stokes problem, Numer. math., 53, 225-236, (1988) · Zbl 0669.76052
[15] Baicchi, C.; Brezzi, F.; Franca, L.P., Vitrual bubbles and Galerkin-least-squares type methods (ga.L.S.), Comput. methods appl. mech. engrg., 105, 125-141, (1993) · Zbl 0772.76033
[16] Brezzi, F.; Bristeau, M.-O.; Franca, L.P.; Mallet, M.; Rogé, G., A relationship between stabilized finite element methods and the Galerkin method with bubble functions, Comput. methods appl. mech. engrg., 96, 117-129, (1992) · Zbl 0756.76044
[17] Franca, L.P.; Frey, S.L., Stabilized finite element methods: II. the incompressible Navier-Stokes equations, Comput. methods appl. mech. engrg., 99, 209-233, (1992) · Zbl 0765.76048
[18] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/Petrov-Galerkin formulations for convective dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. methods appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[19] Hughes, T.J.R.; Brooks, A.N., A multidimensional upwind scheme with no crosswind diffusion, (), 19-35 · Zbl 0423.76067
[20] Hansbo, P.; Szepessy, A., A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations, Comput. methods appl. mech engrg., 84, 175-192, (1990) · Zbl 0716.76048
[21] Tezduyar, T.E.; Mittal, S.; Ray, S.E.; Shih, R., Incompressible flow computations using stabilized bilinear and linear equal-order-interpolation velocity-pressure elements, Comput. methods appl. mech. engrg., 95, 221-242, (1992) · Zbl 0756.76048
[22] Tezduyar, T.E.; Behr, M.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: I. the concept and the preliminary numerical tests, Comput. methods appl. mech. engrg., 94, 339-352, (1992) · Zbl 0745.76044
[23] Tezduyar, T.E.; Behr, M.; Mittal, S.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II. computation of free-surface flows, two-liquid flows, and flows with drifting cylinders, Comput. methods. appl. mech. engrg., 94, 353-371, (1992) · Zbl 0745.76045
[24] Johnson, C.; Nävert, U.; Pitkäranta, J., Finite element methods for linear hyperbolic problem, Comput. methods appl. mech. engrg., 45, 285-312, (1984) · Zbl 0526.76087
[25] Hughes, T.J.R.; Franca, L.P.; Mallet, M., A new finite element formulation for computational fluid dynamics: VI. convergence analysis of the generalized SUPG formulation for linear t time-dependent multidimensional advective-diffusive systems, Comput. methods appl. mech. engrg., 63, 97-112, (1987) · Zbl 0635.76066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.