×

zbMATH — the first resource for mathematics

Bifurcation of a solid circular elastic cylinder under finite extension and torsion. (English) Zbl 0771.73030
Summary: The problem of bifurcation of a solid circular cylinder subjected to finite extension and torsion is investigated using the theory of small deformations superposed on large elastic deformations. The material of the cylinder is assumed to be isotropic, elastic, homogeneous and incompressible. A numerical scheme is adopted to solve the system of partial differential equations and the associated boundary conditions governing the problem for a class of strain-energy functions. The numerical results obtained determined the critical twist corresponding to a given extension of the cylinder.

MSC:
74G99 Equilibrium (steady-state) problems in solid mechanics
74H99 Dynamical problems in solid mechanics
74B20 Nonlinear elasticity
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Green, A. E., Rivlin, R. S., Shield, R. T.: General theory of small elastic deformations superposed on finite elastic deformations. Proc. Roy. Soc.A 211, 128-154 (1952). · Zbl 0046.41208 · doi:10.1098/rspa.1952.0030
[2] Wilkes, E. W.: On the stability of a circular tube under end thrust. Quart. J. Mech. Appl. Math8, 88-100 (1955). · Zbl 0064.18602 · doi:10.1093/qjmam/8.1.88
[3] Green, A. E., Spencer, A. J. M.: The stability of a circular cylinder under finite extension and torsion. J. Math. Phys.37, 316-338 (1959). · Zbl 0088.16503
[4] Ogden, R. W.: Non-linear elastic deformations. Chichester: Ellis Horwood 1984. · Zbl 0541.73044
[5] Ball, J. M.: Discontinuous equilibrium solutions and cavitation in non-linear elasticity. Phil. Trans. Roy. Soc.A 306, 557-611 (1982). · Zbl 0513.73020 · doi:10.1098/rsta.1982.0095
[6] Houghton, D. M., Ogden, R. W.: On the incremental equations in non-linear elasticity II, bifurcation of pressurized spherical shells. J. Mech. Phys. Solids26, 111-138 (1978). · Zbl 0401.73077 · doi:10.1016/0022-5096(78)90017-0
[7] Sawyers, K. N., Rivlin, R. S.: Stability of a thick elastic plate under thrust. J. Elasticity12, 101-125 (1982). · Zbl 0486.73041 · doi:10.1007/BF00043707
[8] Green, A. E., Zerna, W.: Theoretical elasticity. Oxford: Clarendon Press 1954. · Zbl 0056.18205
[9] Rivlin, R. S.: Large elastic deformation of isotropic materials. VI. Further results in the theory of torsion shear and flexure. Phil. Trans. Roy. Soc.A 242, 173-195 (1949). · Zbl 0035.41503 · doi:10.1098/rsta.1949.0009
[10] Duka, E. D.: Bifurcation problems in finite elasticity. Ph. D. Thesis, University of Nottingham, 1988.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.