zbMATH — the first resource for mathematics

A vorticity-velocity method for the numerical solution of 3D incompressible flows. (English) Zbl 0770.76045
A new method for the numerical solution of the 3D Navier-Stokes equations written in terms of vorticity-velocity is presented. The advantages of this formulation with respect to primitive variables and vorticity- vector-potential ones are discussed in view of physical as well as engineering applications. A suitable form of the continuum equations, the most appropriate discretization scheme, and variable location in order to guarantee the solenoidality of the velocity and vorticity fields are introduced and justified. A 3D lid driven cavity problem is chosen as test case for comparison and validation purposes.

76M20 Finite difference methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI
[1] Ku, H.C.; Hirsh, R.S.; Taylor, T., J. comput. phys., 70, 439, (1987)
[2] Mallison, G.; de Vahl Davis, G., J. fluid mech., 83, 1, (1977)
[3] Dennis, S.C.R.; Ingham, D.B.; Cook, R.N., J. comput. phys., 33, 325, (1979)
[4] Osswald, G.A.; Ghia, K.N.; Ghia, U., AIAA paper, 87-1139, 408, (1987)
[5] Gresho, P.M., Annu. rev. fluid mech., 23, 413, (1991)
[6] Quartapelle, L.; Napolitano, M., J. comput. phys., 62, 340, (1986)
[7] Speziale, C.G., J. comput. phys., 73, 476, (1987)
[8] Perng, C.Y.; Street, R.L., Int. J. numer. methods fluids, 9, 341, (1989)
[9] D. Gosman, Computational Dynamics Limited, private communication, 1989.
[10] Morino, L., ()
[11] Stella, F.; Guj, G., Int. J. numer. methods fluids, 9, 1285, (1989)
[12] Reizes, J.A.; Leonardi, E.; de Vahl Davis, G., (), 903
[13] Guj, G.; Stella, F., Int. J. numer. methods fluids, 8, 405, (1988)
[14] Stella, F., Problema di Rayleigh-be´nard in domini limitati, ()
[15] Stella, F.; Guj, G.; Leonardi, E., The Rayleigh-benard problem in intermediate limited domains, (), (unpublished) · Zbl 0800.76431
[16] Stella, F.; Guj, G., ()
[17] Stella, F.; Guj, G.; Leonardi, E.; de Vahl Davis, G., The velocity-vorticity and the vector potential-vorticity formulations in three-dimensional natural convection, (), (unpublished) · Zbl 0715.76060
[18] Samarskii, A.; Andreyev, V., URSS comput. maths. and math. phys., 3, No. 6, 1373, (1963)
[19] Koseff, J.R.; Street, R.L., ASME J. fluids eng., 106, 390, (1984)
[20] Richardson, S.M.; Cornish, A.R.H., J. fluid mech., 82, 309, (1977)
[21] Stella, F.; Guj, G., Vorticity-velocity formulation in the computation of flows in multiconnected domains, (), 200, (unpublished) · Zbl 0684.76037
[22] Quartapelle, L.; Valz-Gris, F., Int. J. numer. methods fluids, 1, 129, (1981)
[23] Mallison, G.; de Vahl Davis, G., J. comput. phys., 12, 4, 435, (1973)
[24] Behnia, M.; de Vahl Davis, G.; Stella, F.; Guj, G., (), 19
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.