×

zbMATH — the first resource for mathematics

A prescription for the identification of finite plastic strain. (English) Zbl 0769.73032
A procedure is described, by means of which plastic strain can be identified, both conceptually and experimentally. This, and other procedures or prescriptions, enable one to relate the concepts which appear in the rate-type constitutive theory to measurements of stress and strain. The procedure given for the identification of plastic strain also allows one to define a multiplicative decomposition of the deformation gradient which is free from the shortcomings of the one that has been usually employed during the past 20 years.

MSC:
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74C20 Large-strain, rate-dependent theories of plasticity
74C99 Plastic materials, materials of stress-rate and internal-variable type
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Green, A.E.; Naghdi, P.M., Arch. rat. mech. anal., 18, 251, (1965)
[2] Green, A.E.; Naghdi, P.M., (), 117
[3] Naghdi, P.M.; Trapp, J.A., Int. J. engng sci., 13, 785, (1975)
[4] Casey, J.; Naghdi, P.M., J. appl. mech., 48, 285, (1981)
[5] Casey, J.; Naghdi, P.M., (), 61
[6] Casey, J.; Naghdi, P.M., Quart. J. mech. appl. math., 37, 231, (1984)
[7] Casey, J.; Naghdi, P.M., (), 53
[8] Naghdi, P.M., J. appl. math. phys. (ZAMP), 41, 315, (1990)
[9] Pipkin, A.C.; Rivlin, R.S., J. appl. math. phys. (ZAMP), 16, 313, (1965)
[10] Owen, D.R., Arch. rat. mech. anal., 31, 91, (1968)
[11] Owen, D.R., Arch. rat. mech. anal., 37, 85, (1970)
[12] Lucchesi, M.; Podio-Guidugli, P., Arch. rat. mech. anal., 102, 23, (1988)
[13] Lucchesi, M.; Podio-Guidugli, P., Arch. rat. mech. anal., 110, 9, (1990)
[14] Naghdi, P.M., (), 121
[15] Phillips, A., (), 193
[16] Liu, K.C.; Greenstreet, W.L., (), 35
[17] Stout, M.G.; Martin, P.L.; Helling, D.E.; Canova, G.R., Int. J. plasticity, 1, 163, (1985)
[18] Lee, E.H., J. appl. mech., 36, 1, (1969)
[19] Green, A.E.; Naghdi, P.M., Int. J. engng sci., 9, 1219, (1971)
[20] Casey, J.; Naghdi, P.M., J. appl. mech., 47, 672, (1980)
[21] Lee, E.H., Int. J. solids struct., 17, 859, (1981)
[22] Cleja-Tigoiu, S.; Soós, E., Appl. mech. rev., 43, 131, (1990)
[23] Casey, J.; Naghdi, P.M., Arch. rat. mech. anal., 102, 351, (1988)
[24] Naghdi, P.M.; Trapp, J.A., J. appl. mech., 41, 254, (1974)
[25] Casey, J., Int. J. plasticity, 2, 247, (1986)
[26] Casey, J.; Lin, H.H., J. Méc. théor. appl., 5, 685, (1986)
[27] Casey, J., Anisotropy and localization of plastic deformation, (), 291
[28] Eisenberg, M.A.; Yen, C.-F., J. engng mat. tech., 106, 355, (1984)
[29] Lamba, H.S.; Sidebottom, O.M., J. engng mat. tech., 100, 96, (1978)
[30] Lamba, H.S.; Sidebottom, O.M., J. engng mat. tech., 100, 104, (1978)
[31] Naghdi, P.M.; Nikkel, D.R., J. appl. mech., 53, 821, (1986)
[32] Casey, J.; Lin, H.H., J. appl. mech., 50, 795, (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.