×

zbMATH — the first resource for mathematics

Boundary conditions for direct simulations of compressible viscous flows. (English) Zbl 0766.76084
Authors’ abstract: Procedures to define boundary conditions for Navier- Stokes equations are discussed. A new formulation using characteristic wave relations through boundaries is derived for the Euler equations and generalized to the Navier-Stokes equations. The emphasis is on deriving boundary conditions compatible with modern non-dissipative algorithms used for direct simulations of turbulent flows. These methods have very low dispersion errors and require precise boundary conditions to avoid numerical instabilities and to control spurious wave reflections at the computational boundaries.
The present formulation is an attempt to provide such conditions. Reflecting and non-reflecting boundary condition treatments are presented. Examples of practical implementations for inlet and outlet boundaries as well as slip and no-slip walls are presented. The method applies to subsonic and supersonic flows. It is compared with a reference method based on extrapolation and partial use of Riemann invariants. Test cases described include a ducted shear layer, vortices propagating through boundaries, and Poiseuille flow. Although no mathematical proof of well-posedness is given, the method used the correct number of boundary conditions required for well-posedness of the Navier-Stokes equations and the examples reveal that it provides a significant improvement over the reference method.

MSC:
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
76M99 Basic methods in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] K.W. Thompson, J. Comput. Phys., submitted
[2] S. K. Lele, J. Comput. Phys., submitted; AIAA Paper 89-0374 (unpublished).
[3] Yu, K.; Lee, S.; Trouve, A.; Stewart, H.; Daily, J., AIAA paper 87-1871, (1987), (unpublished)
[4] Poinsot, T.; Trouve, A.; Veynante, D.; Candel, S.; Esposito, E., J. fluid mech., 177, 4, 265, (1986)
[5] Sterling, J.D.; Zukoski, E.E., AIAA paper 87-0220, (1987), (unpublished)
[6] Menon, S.; Jou, W.-H., AIAA paper 87-1421, (1987), (unpublished)
[7] Kailasanath, K.; Gardner, J.; Boris, J.-P.; Oran, E., Naval research lab. memo, report 5832, (1986), (unpublished)
[8] Kreiss, H.-O., Commun. pure appl. math., 23, 277, (1970)
[9] Higdon, R.L., SIAM rev., 28, 177, (1986)
[10] Engquist, B.; Majda, A., Math. comput., 31, 629, (1977)
[11] Gustafsson, B.; Oliger, J., Math. comput., 26, 649, (1982)
[12] Gustafsson, B.; Sundström, A., SIAM J. appl. math., 35, 2, 343, (1978)
[13] Williams, F.A., Combustion theory, (1985), Benjamin/Cummings Menlo, CA/Reading, MA
[14] Rudy, D.H.; Strikwerda, J.C., J. comput. phys., 36, 55, (1980)
[15] Rudy, D.H.; Strikwerda, J.C., Comput. fluids, 9, 327, (1981)
[16] Moretti, G., (), 73
[17] Yee, H.C., NASA tech. memo 81265, (1981)
[18] Hedstrom, G.W., J. comput. phys., 30, 222, (1979)
[19] Bayliss, A.; Turkel, E., (), 1
[20] Bechert, D.; Stahl, B., J. fluid mech., 186, 63, (1988)
[21] Ho, C.M.; Nosseir, N., J. fluid mech., 105, 119, (1981)
[22] Tang, T.; Rockwell, D., J. fluid mech., 126, 187, (1983)
[23] Poinsot, T.; Candel, S., Combust. sci. technol., 61, 121, (1988)
[24] Buell, J.; Huerre, P., (), 19
[25] Gresho, P.; Sani, R., Int. J. numer. methods fluids, 7, 1111, (1987)
[26] Grinstein, F.F.; Oran, E.S.; Boris, J.P., Aiaa j., 25, 1, 92, (1987)
[27] Jameson, A.; Baker, T.J., AIAA paper 84-0093, (1984), (unpublished)
[28] Oliger, J.; Sundström, A., SIAM J. appl. math., 35, 419, (1978)
[29] Dutt, P., SIAM J. numer. anal., 25, 2, 245, (1988)
[30] Vichnevetsky, R.; Pariser, E.C., Numer. methods partial diff. eqs., 2, 1, (1986)
[31] Vichnevetsky, R., J. comput. phys., 63, 268, (1986)
[32] Strikwerda, J.C., Commun. pure appl. math., 30, 797, (1977)
[33] Vichnevetsky, R.; Bowles, J.B., Fourier analysis of numerical approximations of hyperbolic equations, (1982), SIAM Philadelphia · Zbl 0495.65041
[34] Keller, J.O.; Givoli, D., J. comput. phys., 82, 1, 172, (1989)
[35] Schlichting, H.; Schlichting, H., Boundary layer theory, (), 281 · Zbl 0099.20603
[36] Hagstrom, T.; Hariharan, S.I.; Hagstrom, T.; Hariharan, S.I., Math. comput., Math. comput., 51, 581, (1988)
[37] Liu, T.P., Commun. pure appl. math., 39, 565, (1986)
[38] Poinsot, T.; Lele, S., (), (unpublished)
[39] Rudy, D.H., ASME FED, appl. parallel process. fluid mech., 47, 75, (1987)
[40] P.S. Lowery, W.C. Reynolds and N. Mansour, AIAA Paper 87-0132 (unpublished).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.