zbMATH — the first resource for mathematics

Canonical correlations associated with symmetric reflexive generalized inverses of the dispersion matrix. (English) Zbl 0766.62032
L’objet du papier est d’établir, en utilisant une approche géométrique, les liens qui existent entre les corrélations canoniques de deux vecteurs aléatoires suivant qu’ils sont obtenus soit à partir de la matrice des covariances, soit á partir d’une inverse généralisée réflexive symétrique de cette matrice. L’étude concerne, en particulier, le nombre des corrélations valant 1.

62H20 Measures of association (correlation, canonical correlation, etc.)
15A99 Basic linear algebra
Full Text: DOI
[1] Afriat, S.N., Orthogonal and oblique projectors and the characteristics of pairs of vector spaces, Proc. Cambridge philos. soc., 53, 800-816, (1957)
[2] Anderson, T.W., An introduction to multivariate statistical analysis, An introduction to multivariate statistical analysis, (1958), Wiley New York · Zbl 0083.14601
[3] Baksalary, J.K.; Kala, R., Range invariance of certain matrix products, Linear and multilinear algebra, 14, 89-96, (1983) · Zbl 0523.15006
[4] Jewell, N.P.; Bloomfield, P., Canonical correlations of past and future for time series: definitions and theory, Ann. statist., 11, 837-847, (1983) · Zbl 0519.62084
[5] Khatri, C.G., A note on multiple and canonical correlation for a singular covariance matrix, Psychometrika, 41, 465-470, (1976) · Zbl 0381.62048
[6] Khatri, C.G., Some properties of \scblue in a linear model and canonical correlations associated with linear transformations, J. multivariate anal., 34, 211-226, (1990) · Zbl 0731.62116
[7] Latour, D.; Puntanen, S.; Styan, G.P.H., Equalities and inequalities for the canonical correlations associated with some partitioned generalized inverses of a covariance matrix, (), 541-553
[8] Marsaglia, G.; Styan, G.P.H., Rank conditions for generalized inverses of partitioned matrices, Sankhyā ser. A, 36, 437-442, (1974) · Zbl 0309.15002
[9] Marsaglia, G.; Styan, G.P.H., Equalities and inequalities for ranks of matrices, Linear and multilinear algebra, 2, 269-292, (1974)
[10] Puntanen, S., On the relative goodness of ordinary least squares estimation in the general linear model, Acta univ. tamper. ser. A, 216, (1987) · Zbl 0652.62050
[11] Rao, C.R., Linear statistical inference and its applications, Linear statistical inference and its applications, (1965), Wiley New York · Zbl 0137.36203
[12] Rao, C.R., A lemma on g-inverse of a matrix and computation of correlation coefficients in the singular case, Comm. statist. theory methods, 10, 1-10, (1981) · Zbl 0477.62040
[13] Rao, C.R.; Mitra, S.K., Generalized inverse of matrices and its applications, (1971), Wiley New York
[14] Rao, C.R.; Yanai, H., General definition and decomposition of projectors and some applications to statistical problems, J. statist. plann. inference, 3, 1-17, (1979) · Zbl 0427.62046
[15] Seshadri, V.; Styan, G.P.H., Canonical correlations, rank additivity and characterizations of multivariate normality, (), 331-344, North-Holland, Amsterdam · Zbl 0419.62049
[16] Styan, G.P.H., Schur complements and linear statistical models, (), 37-75
[17] Yanai, H., Explicit expressions of projectors on canonical variables and distances between centroids of groups, J. Japan statist. soc., 11, 43-53, (1981) · Zbl 0519.62046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.