×

zbMATH — the first resource for mathematics

On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. (English) Zbl 0765.90073
The authors show that the Douglas-Rachford splitting method for finding a zero of the sum of two monotone operators is a special case of the proximal point algorithm by means of an operator called a splitting operator. Therefore, applications of Douglas-Rachford splitting, such as the alternating direction method of multipliers for convex programming decomposition, are also special cases of the proximal point algorithm. This observation allows the unification and generalization of a variety of convex programming algorithms. By introducing a modified version of the proximal point algorithm, the authors derive a new, generalized alternating direction method of multipliers for convex programming. Advances of this sort illustrate the power and generality gained by adopting monotone operator theory as a conceptual framework.
Reviewer: Liu Zheng (Anshan)

MSC:
90C25 Convex programming
49M29 Numerical methods involving duality
47H05 Monotone operators and generalizations
90C48 Programming in abstract spaces
49J40 Variational inequalities
90-08 Computational methods for problems pertaining to operations research and mathematical programming
47N10 Applications of operator theory in optimization, convex analysis, mathematical programming, economics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] D.P. Bertsekas, ”Necessary and sufficient conditions for a penalty method to be exact,”Mathematical Programming 9 (1975) 87–99. · Zbl 0325.90055 · doi:10.1007/BF01681332
[2] D.P. Bertsekas,Constrained Optimization and Lagrange Multiplier Methods (Academic Press, New York, 1982). · Zbl 0572.90067
[3] D.P. Bertsekas and J. Tsitsiklis,Parallel and Distributed Computation: Numerical Methods (Prentice-Hall, Englewood Cliffs, NJ, 1989). · Zbl 0743.65107
[4] H. Brézis,Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert (North-Holland, Amsterdam, 1973). · Zbl 0252.47055
[5] H. Brézis and P.-L. Lions, ”Produits infinis de resolvantes,”Israel Journal of Mathematics 29 (1978) 329–345. · Zbl 0387.47038 · doi:10.1007/BF02761171
[6] V. Doležal,Monotone Operators and Applications in Control and Network Theory (Elsevier, Amsterdam, 1979).
[7] J. Douglas and H.H. Rachford, ”On the numerical solution of heat conduction problems in two and three space variables,”Transactions of the American Mathematical Society 82 (1956) 421–439. · Zbl 0070.35401 · doi:10.1090/S0002-9947-1956-0084194-4
[8] R. Durier, ”On locally polyhedral convex functions,” Working paper, Université de Dijon (Dijon, 1986).
[9] R. Durier and C. Michelot, ”Sets of efficient points in a normed space,”Journal of Mathematical Analysis and its Applications 117 (1986) 506–528. · Zbl 0605.49020 · doi:10.1016/0022-247X(86)90237-4
[10] J. Eckstein, ”The Lions–Mercier algorithm and the alternating direction method are instances of the proximal point algorithm,” Report LIDS-P-1769, Laboratory for Information and Decision Sciences, MIT (Cambridge, MA, 1988).
[11] J. Eckstein, ”Splitting methods for monotone operators with applications to parallel optimization,” Doctoral dissertation, Department of Civil Engineering, Massachusetts Institute of Technology. Available as Report LIDS-TH-1877, Laboratory for Information and Decision Sciences, MIT (Cambridge, MA, 1989).
[12] M. Fortin and R. Glowinski, ”On decomposition-coordination methods using an augmented Lagrangian,” in: M. Fortin and R. Glowinski, eds.,Augmented Lagrangian Methods: Applications to the Solution of Boundary-Value Problems (North-Holland, Amsterdam, 1983). · Zbl 0525.65045
[13] D. Gabay, ”Applications of the method of multipliers to variational inequalities,” in: M. Fortin and R. Glowinski, eds.,Augmented Lagrangian Methods: Applications to the Solution of Boundary-Value Problems (North-Holland, Amsterdam, 1983).
[14] D. Gabay and B. Mercier, ”A dual algorithm for the solution of nonlinear variational problems via finite element approximations,”Computers and Mathematics with Applications 2 (1976) 17–40. · Zbl 0352.65034 · doi:10.1016/0898-1221(76)90003-1
[15] R. Glowinski and P. Le Tallec, ”Augmented Lagrangian methods for the solution of variational problems,” MRC Technical Summary Report #2965, Mathematics Research Center, University of Wisconsin-Madison (Madison, WI, 1987). · Zbl 0551.73041
[16] R. Glowinski and A. Marroco, ”Sur l’approximation, par elements finis d’ordre un, et la resolution, par penalisation-dualité, d’une classe de problemes de Dirichlet non lineares,”Revue Française d’Automatique, Informatique et Recherche Opérationelle 9(R-2) (1975) 41–76. · Zbl 0368.65053
[17] E.G. Gol’shtein, ”Method for modification of monotone mappings,”Ekonomika i Matemacheskaya Metody 11 (1975) 1142–1159.
[18] E.G. Gol’shtein, ”Decomposition methods for linear and convex programming problems,”Matekon 22(4) (1985) 75–101.
[19] E.G. Gol’shtein, ”The block method of convex programming,”Soviet Mathematics Doklady 33 (1986) 584–587. · Zbl 0622.65046
[20] E.G. Gol’shtein, ”A general approach to decomposition of optimization systems,”Soviet Journal of Computer and Systems Sciences 25(3) (1987) 105–114.
[21] E.G. Gol’shtein and N.V. Tret’yakov, ”The gradient method of minimization and algorithms of convex programming based on modified Lagrangian functions,”Ekonomika i Matemacheskaya Metody 11(4) (1975) 730–742.
[22] E.G. Gol’shtein and N.V. Tret’yakov, ”Modified Lagrangians in convex programming and their generalizations,”Mathematical Programming Study 10 (1979) 86–97.
[23] M.R. Hestenes, ”Multiplier and gradient methods,”Journal of Optimization Theory and Applications 4 (1969) 303–320. · Zbl 0174.20705 · doi:10.1007/BF00927673
[24] M.C. Joshi and R.K. Bose,Some Topics in Nonlinear Functional Analysis (Halsted/Wiley, New Delhi, 1985). · Zbl 0596.47038
[25] R.I. Kachurovskii, ”On monotone operators and convex functionals,”Uspekhi Matemacheskaya Nauk 15(4) (1960) 213–215.
[26] R.I. Kachurovskii, ”Nonlinear monotone operators in Banach space,”Russian Mathematical Surveys 23(2) (1968) 117–165. · Zbl 0182.18901 · doi:10.1070/RM1968v023n02ABEH001239
[27] B. Kort and D.P. Bertsekas, ”Combined primal–dual and penalty methods for convex programming,”SIAM Journal on Control and Optimization 14 (1976) 268–294. · Zbl 0332.90035 · doi:10.1137/0314020
[28] J. Lawrence and J.E. Spingarn, ”On fixed points of non-expansive piecewise isometric mappings,”Proceedings of the London Mathematical Society 55 (1987) 605–624. · Zbl 0605.47052 · doi:10.1112/plms/s3-55.3.605
[29] O. Lefebvre and C. Michelot, ”About the finite convergence of the proximal point algorithm,” in: K.-H. Hoffmann et al., eds.,Trends in Mathematical Optimization: 4th French–German Conference on Optimization. International Series of Numerical Mathematics No. 84 (Birkhäuser, Basel, 1988). · Zbl 0639.90089
[30] P.-L. Lions, ”Une méthode itérative de resolution d’une inequation variationnelle,”Israel Journal of Mathematics 31 (1978) 204–208. · Zbl 0395.49013 · doi:10.1007/BF02760552
[31] P.-L. Lions and B. Mercier, ”Splitting algorithms for the sum of two nonlinear operators,”SIAM Journal on Numerical Analysis 16 (1979) 964–979. · Zbl 0426.65050 · doi:10.1137/0716071
[32] F.J. Luque, ”Asymptotic convergence analysis of the proximal point algorithm,”SIAM Journal on Control and Optimization 22 (1984) 277–293. · Zbl 0533.49028 · doi:10.1137/0322019
[33] G.I. Marchuk,Methods of Numerical Mathematics (Springer, New York, 1975). · Zbl 0329.65002
[34] B. Martinet, ”Regularisation d’inequations variationelles par approximations successives,”Revue Française d’Informatique et de Recherche Operationelle 4(R-3) (1970) 154–158.
[35] B. Martinet, ”Determination approchée d’un point fixe d’une application pseudo-contractante. Cas de l’application prox,”Comptes Rendus de l’Academie des Sciences, Paris, Série A 274 (1972) 163–165. · Zbl 0226.47032
[36] G.J. Minty, ”On the maximal domain of a ’monotone’ function,”Michigan Mathematical Journal 8 (1961) 135–137. · Zbl 0102.37503 · doi:10.1307/mmj/1028998564
[37] G.J. Minty, ”Monotone (nonlinear) operators in Hilbert space,”Duke Mathematics Journal 29 (1962) 341–346. · Zbl 0111.31202 · doi:10.1215/S0012-7094-62-02933-2
[38] G.J. Minty, ”On the monotonicity of the gradient of a convex function,”Pacific Journal of Mathematics 14 (1964) 243–247. · Zbl 0123.10601
[39] D. Pascali and S. Sburlan,Nonlinear Mappings of Monotone Type (Editura Academeie, Bucarest, 1978). · Zbl 0423.47021
[40] G.B. Passty, ”Ergodic convergence to a zero of the sum of monotone operators in Hilbert space,”Journal of Mathematical Analysis and Applications 72 (1979) 383–390. · Zbl 0428.47039 · doi:10.1016/0022-247X(79)90234-8
[41] M.J.D. Powell, ”A method for nonlinear constraints in minimization problems,” in: R. Fletcher, ed.,Optimization (Academic Press, New York, 1969). · Zbl 0194.47701
[42] R.T. Rockafellar, ”Characterization of the subdifferentials of convex functions,”Pacific Journal of Mathematics 17 (1966) 497–510. · Zbl 0145.15901
[43] R.T. Rockafellar, ”Local boundedness of nonlinear, monotone operators,”Michigan Mathematical Journal 16 (1969) 397–407. · Zbl 0184.17801 · doi:10.1307/mmj/1029000324
[44] R.T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, NJ, 1970). · Zbl 0193.18401
[45] R.T. Rockafellar, ”On the maximal monotonicity of subdifferential mappings,”Pacific Journal of Mathematics 33 (1970) 209–216. · Zbl 0199.47101
[46] R.T. Rockafellar, ”On the maximality of sums of nonlinear monotone operators,”Transactions of the American Mathematical Society 149 (1970) 75–88. · Zbl 0222.47017 · doi:10.1090/S0002-9947-1970-0282272-5
[47] R.T. Rockafellar, ”On the virtual convexity of the domain and range of a nonlinear maximal monotone operator,”Mathematische Annalen 185 (1970) 81–90. · Zbl 0186.20802 · doi:10.1007/BF01359698
[48] R.T. Rockafellar, ”Monotone operators and the proximal point algorithm,”SIAM Journal on Control and Optimization 14 (1976) 877–898. · Zbl 0358.90053 · doi:10.1137/0314056
[49] R.T. Rockafellar, ”Augmented Lagrangians and applications of the proximal point algorithm in convex programming,”Mathematics of Operations Research 1 (1976) 97–116. · Zbl 0402.90076 · doi:10.1287/moor.1.2.97
[50] R.T. Rockafellar, ”Monotone operators and augmented Lagrangian methods in nonlinear programming,” in: O.L. Mangasarian, R.M. Meyer and S.M. Robinson, eds.,Nonlinear Programming 3 (Academic Press, New York, 1977). · Zbl 0458.90050
[51] R.T. Rockafellar and R.J.-B. Wets, ”Scenarios and policy aggregation in optimization under uncertainty,”Mathematics of Operations Research 16(1) (1991) 119–147. · Zbl 0729.90067 · doi:10.1287/moor.16.1.119
[52] J.E. Spingarn, ”Partial inverse of a monotone operator,”Applied Mathematics and Optimization 10 (1983) 247–265. · Zbl 0524.90072 · doi:10.1007/BF01448388
[53] J.E. Spingarn, ”A primal–dual projection method for solving systems of linear inequalities,”Linear Algebra and its Applications 65 (1985) 45–62. · Zbl 0564.65044 · doi:10.1016/0024-3795(85)90086-2
[54] J.E. Spingarn, ”Application of the method of partial inverses to convex programming: decomposition,”Mathematical Programming 32 (1985) 199–233. · Zbl 0565.90058 · doi:10.1007/BF01586091
[55] J.E. Spingarn, ”A projection method for least-squares solutions to overdetermined systems of linear inequalities,”Linear Algebra and its Applications 86 (1987) 211–236. · Zbl 0616.65064 · doi:10.1016/0024-3795(87)90296-5
[56] P. Tseng, ”Applications of a splitting algorithm to decomposition in convex programming and variational inequalities,”SIAM Journal on Control and Optimization 29(1) (1991) 119–138. · Zbl 0737.90048 · doi:10.1137/0329006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.